
D a t a R o l l e r

“Roll your own data”

Version 1.0
User Guide

May 2012

http://dataroller.sourceforge.net/

In a nutshell …

DataRoller is a Java application that will
insert piles of good looking data into your
favorite databases so you can move in and
be happy.

Rich Alberth

Table of Contents

1 For The Impatient ..6

2 Overview ...8

3 Project Files ..9
3.1 Comments ...11
3.2 Labels ...11
3.3 Tables ..11
3.4 Deleting Old Rows ..12
3.5 Parent Child Relationships ...14

3.5.1 Where Clause ...15
3.6 Unique and Unique Per Parent ..16

3.6.1 Data Exhaustion ...18
3.6.2 Example ..19
3.6.3 Independently Unique ...20
3.6.4 Sequences ..20

3.7 Columns ...21
3.8 Data Types ...23

3.8.1 Strings ...23
3.8.2 Integers ...24
3.8.3 Decimals ...25
3.8.4 Floats ..26
3.8.5 Dates and Times ...26
3.8.6 Booleans ...27
3.8.7 Nulls ..27
3.8.8 Unsupported Data Types ..27
3.8.9 Null Expressions ...28

3.9 Variables ...28
3.9.1 Assignment ...28
3.9.2 Variables and randomrow() ..30

3.10 Embedded SQL ..31
3.10.1 Embed SQL in DataRoller File ..32
3.10.2 Reference External SQL File ..33

3.11 A Note on File and Folder Names ...34
3.12 Lookup Tables ..35

2

4 Generators ..37
4.1 Random Data ...38

4.1.1 Random Integers ..38
4.1.2 Random Decimals ..39
4.1.3 Random Floats ..39
4.1.4 Random Dates and Timestamps ..39
4.1.5 Choice ...40
4.1.6 BLOB ..41

4.2 Structured Data ..42
4.2.1 Lorem Ipsum ...42
4.2.2 Sequences ..43

4.3 Column ...45
4.3.1 Current-Row Reference ..47
4.3.2 Separate Table Reference ..47
4.3.3 Parent Table Reference ..48

4.4 Lookup Data ...50
4.4.1 File Row Lookup ...50
4.4.2 Folder Contents Lookup ...50
4.4.3 XML File Lookup ...51
4.4.4 randomrow() ..53
4.4.5 Previous Row ..54

4.5 SQL ...57
4.6 Operators ..58

4.6.1 Types, Nulls and No Short-Circuit Logic ...60
4.6.2 Boolean Operators ..60
4.6.3 Equality Operators ..61
4.6.4 Comparison Operators ...62
4.6.5 Algebraic Operators ..63
4.6.6 String Operators ...64
4.6.7 Dates ...65
4.6.8 Operator Summary Table ...67

4.7 Conditionals ..67
4.7.1 If then else ..67
4.7.2 Case When ...68
4.7.3 Conditionals Example ...69

4.8 Raw() ..69

5 Functions ...71
5.1 String Functions ..72

3

5.1.1 Function pattern() ...74
5.1.2 Function guid() ..75

5.2 Numeric Functions ..76
5.2.1 Integral Functions ...76
5.2.2 Floating-point Functions ...76

5.3 Date and Timestamp Functions ...77
5.4 System Functions ...78
5.5 Cryptographic Functions ..79
5.6 Data-Type Conversion Functions ...79

6 Execution ..82
6.1 Command-line Switches ...82
6.2 User Preferences and Aliases ..84
6.3 Loading JDBC Drivers ..85

6.3.1 SQL Server ...86
6.3.2 Oracle ...86
6.3.3 DB2 ...86

7 Speeding up DataRoller ..87
7.1 DataRoller Generator Relative Costs ...87
7.2 Rebuild Indexes ..89
7.3 Regenerate Statistics ...90
7.4 Lock Tables ...92
7.5 Disable Costly Constraints ...92

8 Extending DataRoller ..93
8.1 User-Supplied Functions ..93
8.2 Java Function ...94
8.3 Arguments and Return Types ...94
8.4 Function Alias ...95
8.5 Function Signature ...95
8.6 Invocation and Execution ...97
8.7 For Example ...97

9 Tips & Tricks ..100
9.1 Using Delete for Row Partitioning ..100
9.2 Dealing with Artificial Primary Keys ..101

9.2.1 MySQL ..102
9.2.2 SQL Server ...103
9.2.3 Oracle Sequences ..103

4

9.3 Avoid Querying Unneeded Data ...104
9.4 Mutually Unique randomrow() ..105

10 For Reference ...108
10.1 Project Syntax Reference ...108
10.2 DataRoller Keywords ..110
10.3 Syntax Reference ...111

10.3.1 Lexical Elements ...111
10.3.2 Grammar ...111

10.4 JDBC URL Reference ...114
10.5 DataRoller License and Included Works ..116

5

1 For The Impatient
DataRoller inserts rows into a database based on a file describing your tables and columns.

Execute this against MySQL:
create database dr;
use dr;

create table invoices (
 invoice_id int,
 alt_key_uid varchar(50),
 name varchar(80),
 label varchar(30),
 status char(3)
);

Put this in a file called basic.txt:
table invoices
 insert 4 rows
{
 invoice_id sequence(),
 alt_key_uid guid(),
 name lorem(20..80),
 label pattern("UU-NNNN"),
 status choice("UNK","SHP","CLS",
 "OPN","INP")
}

This file defines how DataRoller should go about populating your tables and columns, such as how many
rows to insert, and what value to put into each column. Sequence() means 1, then 2, then 3, etc. Read
http://lipsum.com for details on lorem(). Pattern() generates a string based on the codes you pass in.
“U” for an upper-case letter, “N” for a number (0-9 digit). Choice() just picks one of the values supplied
at random.

Download and unzip DataRoller, open a command-window and type this:

dataroller –c jdbc:mysql://localhost/DRTEST –u ROOT –p mypasswd basic.txt

You’ll see this if you have everything installed and running correctly:

DataRoller 1.0

This program comes with ABSOLUTELY NO WARRANTY, is free software, and you
are welcome to redistribute it under certain conditions. See License.txt
for details. Copyright 2012 Rich Alberth.

Invoices [....................] 0s
Done (0s)

Run “select * from invoices”:

+------------+------------------------------------+------------+---------+--------+
| invoice_id | alt_key_uid | name | label | status |
+------------+------------------------------------+------------+---------+--------+
1	03153499-f392-46a8-aa69-f9ff225971	Lacus torq	XN-5814	INP
2	afbc0751-ed8b-4773-9678-4bbf84aef7	Dui maecen	RK-2669	INP
4	2686521e-cc37-4471-99ec-a2625c6d13	Lobortis f	ZR-3740	SHP
5	b8a73acc-a376-441e-bff2-9f8567f52d	Amet in no	DC-1536	OPN
+------------+------------------------------------+------------+---------+--------+
4 rows in set (0.00 sec)

6

http://lipsum.com/

That’s it! You write a text file with instructions on what should go into each table and column and
execute it via a command-line tool. The input text file supports variables, complicated table relationships,
user-supplied functions and much more.

7

2 Overview
DataRoller (motto “Roll your own data!”) is a Java application that will insert piles of good looking data
into your favorite databases so you can move in and be happy.

Here are some good ideas:

Load up thousands of rows of data, fire up your app and see what areas need tuning.
Databases execute your SQL SELECT statements differently based on how much data is in
each table. Real data means real tuning.
Generate a bunch of values that look just like your production database for your next demo.
Ever say this to a crowd of people “sorry this isn’t how the app will look in production, it’s just
test data”?
Throw some stand-in data together quickly for your testing team.
Testers can’t find subtle bugs when they test a screen with only a single record they generated.
Clear out all the rows in your database and reset it with some basic starting data.
After a demo, how do you “reset” your box back to a developer mode?
Rapid prototyping and requirements gathering.
Fill up a new table with good-looking sample data, use a rapid prototyping tool to generate a
skeleton UI and demo it to the users during a requirements meeting.

8

3 Project Files
A project file is the main input to DataRoller. This file documents every table that needs populating, what
to put in each column, and how tables relate to each other. The syntax feels a little like SQL “create
table” statements: each table is listed in the file in the order in which they should be populated. Within
each table section, each column is listed with how data should be generated for it.

A guided tour through your first Project File:

table invoices List each table you want populated, in the
order you want them populated in.

 insert 2000 rows Number of rows to insert (duh). There are
a lot of things you can add later in this
section between the table name and the
“{” for column definitions!

{ Braces group columns per table.

 invoice_id sequence(), “sequence()” means start at 1, increment
each time a new row is inserted.

 name lorem(20..80), Generate Lorem Ipsum text between 20
and 50 characters in length.

 status choice("UNK","SHP","CLS"), Pick one of these supplied values at
random.

 delivery random(D’2009-4-1’ ..
 D’today’

Pick a random date between April 1st 2009

9

 step /hour/), and today, with a time component rounded
to the nearest hour (minutes and seconds
are always zero).

 last_name filerow("names.txt"), “filerow()” means pick a random line from
the text file listed (stripping line
termination chars).

 ship_code pattern("UU-NNNN"), Generate a string based on the pattern
where “U” is an upper-case letter and
“N” is a number (digit).

 ship_label folder("labels.zip")
}

Pick a random file from the given folder,
read it in, and use the contents of the file
as the value for this column (good for
“blob” and “text” columns).

table invoice_items

 child of invoices on
 this.inv_id = parent.invoice_id

 insert 2..15 rows
{

Child table: generate between 2 and 15
rows in invoice_items for every row
generated in table invoices. DataRoller
makes the foreign keys work out the right
way. There are no invoices with no
invoice_items, and no invoices with
thousands of items by accident!

 item_id sequence(10000), Start these values way above invoice_id
values just to keep them apart.

 product column(products.product_id), Look-up table: pick a random value from
table products, column product_id.

 quantity random(1..100), Pick a random integer between 1 and 100.

 price random(1.00 .. 100.25
 step 0.25)

Pick a random decimal (not a
real/float/double, this is specific precision)

10

}

between 1 and 100.25, divisible by 0.25.
I.e., the price always ends in “.00”, “.25”,
“.5” or “.75” (quarters).

The rest of this chapter covers the language elements in a project file.

3.1 Comments

Comments: two slashes (“//”), two dashes (“--”), or C-style /*…*/

table mytbl // really an insertable view
 delete all
 insert 0 rows /* just clear it out */ {
 mycol sequence() -- no args to sequence() means start at 1
}

3.2 Labels

Labels are used to name tables and columns. Labels are:

• Any combination of letters and numbers, underscores (“_”), hash marks (“#”) or dollar signs (“$”)
that are not a DataRoller keyword, or

• Any combination of characters enclosed in square brackets (except a right square bracket
itself (“]”), a newline, carriage return or form feed character).

Note that there is no rule in DataRoller that a label starts with an alphabetic character. Both “12345g” and
“__#mytmp6” are valid labels. This is useful for temporary tables that start with “#”.

3.3 Tables

A DataRoller project file consists of a sequence of table definitions, with some extra, optional declarations
at the top of the file.

A Table definition is made up of:

1. “table” and the name of the table to insert into. A database table can be listed more than once in
a DataRoller project file.

11

2. Table prologue: a set of table-level things, such as:
a. Whether to delete everything before inserting new rows
b. How many rows to insert
c. Whether this is a child table of another definition in the project file.

3. Column definitions, each having:
a. Name of the column to insert into, and
b. An expression telling DataRoller how to construct values to insert.

Separate Column Definitions in a table with a comma.

The order that table definitions appear in the file is the order in which they are processed and inserted. If
you list table products before invoices, and invoices references products, you’re OK: you’ll have data in
products before you try to insert rows into invoices.

Anatomy of a simple table definition:

table invoices

 delete all
Optionally include the keywords “delete all” to have
DataRoller remove all existing rows before inserting
new ones.

 insert 1000 rows
Number of rows to insert, as a fixed amount, or a
range of integers. Zero is valid.

{
 pk sequence()
}

List all column definitions within curly braces. You
do not need to use a comma to separate columns as in
SQL “create table” statements.

3.4 Deleting Old Rows

“delete all” in the example above is the simplest way to clear out old data before having DataRoller
insert fancy new data. This removes all records from the target table.

DataRoller is meant to be run with only the most basic access to the target tables it operates over. The
SQL “truncate” command is much faster than deleting rows from a table, but sometimes requires more

12

rights to the table than “delete”. DataRoller is designed to require no special permissions on the
database other than basic select, insert, and delete.

DataRoller is sensitive to the relationships between tables. You would like table vendors earlier in the
DataRoller Project file than products if products had a foreign key to vendors: DataRoller should
populate the vendors table first, and then populate the products table.

DataRoller does not issue delete statements following this same logic: when executing a DataRoller
Project file, the DataRoller Engine work in two passes:

• Pass 1: Start at the end of the file and work backwards, issuing a delete statement for every table
that specifies “delete”.

• Pass 2: Start at the beginning of the file and work forwards, generating insert statements.

This way, if you have foreign keys referencing tables, you will see the following:

1. Delete from dependent tables
2. Delete from parent tables
3. Insert into parent tables
4. Insert into dependent tables

This processing is not obvious form the syntax of the DataRoller Project file. It was decided to put the
“delete” clause inside the table definition so all facts about a table are defined together in a single
location in the file. This avoids a lot of scrolling around while writing a DataRoller Project file. The
DataRoller Project file is declarative: you specify what you want the results to be, and DataRoller will
make it happen.

The delete statement has two forms:

1. “delete all”, which issues a plain “delete from ___” SQL statement
2. “delete where” followed by a string literal, which issues the same SQL as above with the string

literal appended as a “where” clause.

table foo
 delete where “bid < 7000”
{
 ...
}

This example will issue the SQL statement “delete from foo where bid < 7000”. Note that the
argument to the “delete where” clause is a string, and not arbitrary SQL. The entire example above is
not actual SQL: “delete where” are two DataRoller keywords chosen to look a lot like SQL as a
memory aide. The thing after “where” must be a DataRoller string literal. DataRoller assembles the SQL
delete statement based on these components.

Because a simple string literal is allowed, you cannot use string concatenation (“+”), call functions, or use
generators or any other facility in DataRoller.

13

3.5 Parent Child Relationships

In database parlance, there is only the single “foreign key” concept to handle all design patterns.
Database designers use higher-level concepts to capture relationships.

Examples:

• Reference: Plain foreign key to another table, such as invoice_items.product_id pointing to
the products table, column product_id. This is the “standard” join that database vendors
implement directly.

• Composition: A design concept not directly implemented by databases. In the example above,
each Invoice is composed of one or more Invoice Items. The only way a database can
approximate this is to provide a foreign key from invoice_items to invoices, but this is
incomplete. There is no direct database structure to capture the fact that no Invoice can exist
without at least one Invoice Item.

DataRoller treats these two types of association differently within a project file. References are handled
on a per-column basis, since they just capture picking a random value from the lookup table and using it
in the current row being generated.

Composition is represented in a DataRoller Project file with a clause at the table level to show how the
parent and child tables relate.

Anatomy of a parent child relationship:

child of table on this.fk = parent.pk

“table” is the name of the parent table, “fk” is the column in the child table with the references constraint
on it (the foreign key), and “pk” is the primary key column in the parent table. Note that “this” and
“parent” are keywords in DataRoller and are included to make the line more readable, mimicking the
syntax of a typical SQL JOIN clause.

Example of a child table definition:

14

table invoice_items
 delete all
 child of invoices on this.invoice_id = parent.invoice_id
 insert 1..30 rows
{
 ...
}

When specifying a child table in a parent-child relationship, you can specify a range of rows to generate
(“insert 1..30 rows” in sample above). The range (or single value) is used by DataRoller to decide
how many child rows to insert per parent row. In the above example, if the invoices table section has
“insert 10 rows”, then the invoice_items table will end up with between 10 and 300 rows total
(1×10 .. 30×10).

3.5.1 Where Clause

The “child” clause also supports passing a SQL “where” clause to pick what set of rows should be
affected. In the above example, all rows from invoice_items are removed, and then every row from
invoices receives between 1 and 30 rows in invoice_items. This is a comprehensive action:
everything removed, all parent rows used.

Using a “where” clause on the “child” portion will affect which rows from the parent table are used to
attach child rows. Consider a database with a table of hospital patients, and a child table holding a record
for all medications currently prescribed. Patients that are active (in the hospital) have between zero and 6
medications. Patients that have been discharged always have zero. The database should never have a
discharged patient with meds:

table patients
 insert 800 rows
{
 patient_id sequence(),
 first_name filerow(“classpath:firstnames.txt”),
 last_name filerow(“classpath:lastnames.txt”),
 status choice(“ACTIVE”, “DISCHARGED”)
}

table prescriptions
 child of patients on this.patient_id = parent.patient_id
 where “status = ‘ACTIVE’”
 insert 0..6 rows
{
 rx_code pattern(“UU-NN-UUUUU-NN”)
}

Internally, DataRoller simply issues “select patient_id from patients prnt” when starting to
populate the prescriptions table since it has a “child” clause. It loops over these records and inserts
between 0 and 6 rows per patient_id returned. When a “where” clause is included like above, it
appends it to the query.

In the above example, DataRoller executes “select patient_id from patients prnt where status
= ‘ACTIVE’”, and then generates between 0 and 6 rows for every returned patient_id.

15

The “where” clause text is any arbitrary clause that can be put into a select statement. The “from” that is
in effect is the parent table with table alias “prnt”. Check out the previous paragraph – it’s used there.
The table alias “prnt” is included for “where” clauses that include sub-selected or otherwise needs access
to the parent table being queried. For example, the following table only adds maintenance records for
airplanes with over 10,000 scheduled kilometers.

table airplanes
 . . .
{
 plane_id . . .
}

table maintenance
 child of airplanes
 on this.plane_id = parent.plane_id
 where “10000 < (select sum(distance)
 from routes r
 where r.plane_id = prnt.plane_id)”
 insert 1 row
{
 . . .
}

3.6 Unique and Unique Per Parent

Random data by itself will serve for basic testing and simple scripts, but is insufficient for demonstration
data and portions of the database that will cause application logic to fail with bad data. For example:

• A user screen listing different part numbers from a supply table with the same description
• An algorithm that calculates distances between addresses may divide by zero if it picks two

records from the address table with the same data

Clauses “unique” and “unique per parent” can be added to certain generators below to prevent
DataRoller from generating the same value more than once. For tables that have a “child of” clause,
“unique” will never generate the same value more than once across every row in the table (regardless of
parent row). “Unique per parent” will never generate the same value for all rows in the child table for
a particular parent value. “Unique per parent” may generate the same value for more than one row,
but only if such rows have different parent rows.

Table without “child of” Table with “child of”

random(1..10) May generate duplicates

random(1..10 unique) No duplicates at all

random(1..10 unique per
parent)

Error (“per parent” not
allowed without “child
of”)

No duplicates within each
group of rows with same
parent row.

16

All Generators that support uniqueness (see below for “implicit” discussion):

Generator Supports “unique” Supports “unique
per parent”

random(integers) Yes Yes

random(decimals) No No

random(floating-point) No No

random(dates) Yes Yes

sequence() (all types) implicit Yes

column(mytbl.mycol) Yes Yes

mytbl.mycol No: must use column() syntax to use
unique clauses

column(parent.mycol) No: refers to parent row of a table with
“child of” clause.

column(mycol)
mycol

No: refers to column in the current row
of the current table.

folder() Yes Yes

filerow() Yes Yes

xpath() Yes Yes

randomrow() Yes Yes

17

3.6.1 Data Exhaustion

Be careful when using “unique” and “unique per parent”: if DataRoller does not have enough values
to supply to the number of rows requested, DataRoller will issue an error message and stop.

table foo
 insert 1..10 rows
{
 . . .
}

table bar
 child of foo on this.id = parent.id
 insert 5..7 rows
{
 code random(1..10)
}

There will never be a problem with
column bar.code: since there is
nothing unique about it, the 10
possible values may be used over and
over again.

table foo
 insert 1..10 rows
{
 . . .
}

table bar
 child of foo on this.id = parent.id
 insert 5..7 rows
{
 code random(1..10 unique)
}

Table foo will only have between one
and ten rows total.

Table bar will have between five and
seven rows per row in foo:

1×5 – 10×7
5 – 70

Table bar will contain between five
and seventy rows! The random()
generator does not have enough
possible values to serve more than 10
rows.

table foo
 insert 1..10 rows
{
 . . .
}

table bar
 child of foo on this.id = parent.id
 insert 5..7 rows
{
 code random(1..10 unique per parent)
}

Table bar may have up to seventy
rows, but they are grouped into groups
of five to seven. The ten available
values in random() are more than
enough to handle every group.
DataRoller will not run out of possible
values since it can reuse values across
rows in foo.

18

3.6.2 Example

These rules apply for all generators below that support “unique” and “unique per parent”. For
example, a company that leases large construction equipment has several repair Teams that fix broken
equipment in the field. Each Team has a mix of labor categories on them. A Team does not have more
than one person with the same labor category. Each Team is assigned a single Truck to haul their
equipment. Obviously, the same Truck cannot be assigned to more than one Team.

table trucks
 insert 15 rows
{
 truck_id sequence(1)
 . . .
}

table teams // no need to make this a child of trucks:
 // some trucks are just not used
 insert 10 rows
{
 team_id sequence(),
 truck_id column(trucks.truck_id unique)
}

table team_members
 child of teams on this.team_id = parent.team_id
 insert 1..5 rows
{
 employee_id column(employees.emp_id unique),
 labor_category filerow(“categories.txt” unique per parent)
}

• Every team needs a unique truck: no need for “unique per parent” because teams do not need
to be a child of trucks just to link them together somehow. “Unique” on trucks.truck_id
assures that no record in teams has the same truck_id value.

• Each team_members row represents a person assigned to a truck with their particular skill set. A
single employee cannot work on two trucks, so employees.emp_id is marked “unique” and not
“unique per parent” so that every value for employee_id in table team_members is unique
regardless of the truck they work on. If employee_id was “unique per parent”, a single
employee could work on more than one truck but never more than once on the same truck.

• Each team_members row represents an assignment of an employee to a team. The
labor_category is the capacity they work under. The business does not staff a team with more
than one employee with the same labor category (“welder”, “electrician”, “mechanic”), but any
particular labor_category may be on more than one team (trucks 5 and 7 both have mechanics
on them). Column labor_category is a row from file “categories.txt” such that no row
appears more than once per team. If this filerow() was “unique” instead of “unique per
parent”, every row from categories.txt could be assigned to only a single team (parent row)
instead of being reused from team to team.

19

3.6.3 Independently Unique

Clauses “unique” and “unique per parent” apply only to the generator on which they are applied,
even if two such generators appear on the same column or multiple columns on the same table. For
example:

table code_parts
 insert 100 rows
{
 part filerow(“parts.txt” unique)
}

table codes
 insert 50 rows
{
 code column(code_parts.part unique) + “-“ +
 column(code_parts.part unique)
}

The generator “column(code_parts.part unique)” appears twice in table codes, both for column
code. The fact that they are both there and both use “unique” does not mean that they are collectively
unique: if code_parts contains “ABC” for column part, by chance DataRoller may generate “ABC-ABC”
as a valid value for column code. All generators with “unique” are independently unique: they don’t
talk to each other.

3.6.4 Sequences

Sequences always generate unique values, and so do not support “unique” explicitly (you can’t put
“unique” on them: they are already unique). There are no non-unique sequences such as a “wrap-
around” sequence that might start over from 1 after hitting a maximum value.

Sequences do support the “unique per parent” clause. A “unique per parent” sequence will start
over and reset itself back to its starting value for each new parent row.

Consider a company that wants to generate purchase numbers based on the supplier’s code. The first P.O.
for each supplier has a “1”, then a “2”, and so on. Any P.O. number will therefore have the supplier it
applies to, and a sequence showing which P.O. it is for that supplier.

20

table suppliers
 insert 80 rows
{
 label “S” + format(sequence(1), “00”)
}

table purchase_orders
 child of suppliers on this.id = parent.id
 insert 0..10 rows
{
 id sequence(1),
 po_num parent.label + “-” +
 format(sequence(1),
 “000”)
}

Generates P.O. numbers:
S01-01
S01-02
S01-03

S02-04 we wanted “-01” here!
S02-05
S02-06

S03-07 we wanted “-01” here!
S03-08
S03-09

Not what we wanted.

table suppliers
 insert 80 rows
{
 label “S” + format(sequence(1), “00”)
}

table purchase_orders
 child of suppliers on this.id = parent.id
 insert 0..10 rows
{
 id sequence(1),
 po_num parent.label + “-” +
 format(sequence(1 unique per parent),
 “000”)
}

Generates P.O. numbers:
S01-01
S01-02
S01-03

S02-01
S02-02
S02-03

S03-01
S03-02
S03-03

Each supplier gets P.O. numbers with
their label, starting at 1.

3.7 Columns

After a table definition (“table invoices delete all insert 100 rows”) are a collection of zero or
more Column Definitions separated by commas, all within one set of curly braces (“{” and “}”). Each
Column Definition has the name of a column to populate with data, and an expression that describes how
DataRoller should generate data for that column. DataRoller Variables can be set as well, but see the
Variables section below for details.

A sample Column Definition:

ncd_code “AB-” + pattern(“UUUNNNNNN”) + format(sequence(1), “000”)

“ncd_code” is the name of the column and everything else is the Generator. The column name does not
appear in double-quotes, but you can surround it with “[” and “]” if your column name is the same as a
DataRoller keyword (like “sequence”).

“Generator” is a broad term in DataRoller for anything that can generate data suitable for inserting into
the database. Generators each can generate dates, strings, and numbers following a random pattern, or

21

more organized logic. A Generator Expression is a bunch of Generators combined with things like “+” for
string concatenation or numerical addition.

Column values can be broken down into two groups:

• The single syntax raw() used to modify the generated SQL insert statement used by DataRoller.
• All other Generators (see below) that generate values that are bound to the SQL insert statement.

DataRoller constructs a SQL insert statement for each table as follows:

1. Each column in the DataRoller file is added as a column name in the SQL insert statement. Note
that the local foreign key to a parent table is also included in the insert statement.

22

2. Each column contributes one “?” to the values clause of the SQL insert statement. All
generators and parent table definitions contribute a “?” that is bound on a per-row basis to
whatever the Generator generates. Raw() is the exception: the argument to raw() is used directly
in the SQL insert statement instead of a “?” for later binding.

Because raw() is used to construct the SQL insert statement directly, raw() cannot be combined with
any Generator or appear in any fashion other than by itself as the only portion of the column.

3.8 Data Types

3.8.1 Strings

Strings are any sequence of characters surrounded by double quotes. The usual escapes are supported:

Escape Value Description

\\ \ Backslash escapes the next char, another backslash.

\r ASCII 0x0D, the carriage return (non-printable).

\n Newline

\t Horizontal tab. There is no “\v” available for vertical
tab. Does anyone use vertical tabs anymore?

\" " Escape the double-quote. There is no “\'” to escape a
single quote. Use the single quote directly in the
string.

23

Escape Value Description

\u00a7
\u2264

§
≤

Unicode characters can be included with “\u”
followed by exactly four hex digits (case-insensitive).

Newlines (carriage returns and linefeeds) are valid characters in their own right, so you don’t have to use
“\n” if you don’t want to. Be careful, because this means forgetting to put a closing double-quote at the
end of a line does not generate an error. All text until the next double-quote character will be included in
the string, leading to unexpected errors flagged nowhere near where the root cause is!

String Literal Exact Value Comments

"Hello World!" Hello World!
Simplest string, nothing fancy going on.

"line1\nline2\nline3" line1
line2
line3

The “\n” put actual newlines into the
string literal.

"line1
line2
line3"

line1
line2
line3

A string may span multiple lines for
embedding long SQL, for example.
Newlines are preserved.

"_'thing1'_\"thing2\"_
"

'thing1'"thing2"_
Escaped double quotes. Single quotes
do not need to be escaped.

"Use \"\\t\" for tab" Use "\t" for tab
\\ is a single \ and the t is just a t.

3.8.2 Integers

Integral numbers are any whole number, negative, zero or positive. Internally, all integral numbers are
stored as Java longs, so you have an effective range of a negative number of 19 digits to a positive
number of 19 digits.

By default, all integer literals are assumed to be expressed in base 10 notation. Prefix a literal with “0x”
to use hex (0-9 and A-F). Octal is supported by appending “_8” and binary is supported by appending

24

“_2”. The “_” is reminiscent of a subscript notation from typesetting language TEX. There are no other
bases supported with the “_” notation currently. Note that “0123” is a decimal number, not octal in this
scheme!

Integer Literal Base 10 Value Description

123 123
Numbers are base-10 by default.

-560000 -560000
Negative numbers as expected.

0xFf 255
“0x” is hex prefix. “F” and “f” are both 15.

-0xa8 -168
Negation comes before the “0x”.

123_8 83
1238 = 8310

-123_8 -83
Negatives are the same as base-10 above.

1010_2 10
10102 = 1010

-1010_2 -10
Negatives are the same as base-10 above.

Note that Decimals and Floats below are only expressible in base-10 notation.

3.8.3 Decimals

Decimals are real numbers with a fixed number of decimal places (no repeating decimals like
0.3333333…). Decimals are expressed as 1 or more digits, a period and one or more digits, such as “1.0”

25

or “-559.0021837”. Decimals are used for database columns like DECIMAL(10,5) and NUMBER(9,2):
those types that have perfect precision and no round-off errors like typical floating point numbers.

Be careful with Decimals! They have no ability to represent irrational numbers or numbers with repeating
decimal digits like the number “one third” (1÷3). The number “1.3333…” is not a Decimal.

Decimals are internally represented by a 32-bit integer holding the mantissa and a 32-bit integer scale that
holds where the decimal point is in relation to the whole number mantissa. The advantage of Decimals is
that they do not suffer from rounding or inexact mathematics. Ever add 0.000001 to 0.000002 and get
0.000002999999999 with IEEE floating point types? …not with Decimals!

3.8.4 Floats

Floats differ from Decimals in that they directly correspond to the internal floating point types of the Java
language and the underlying operating system. Floats are only applicable for database types such as
“float”, “real” and “double”. Using a Decimal DataRoller type for a database double column will result in
potential rounding problems. Using a Float DataRoller type with a database DECIMAL column may result
in over/underflows and inexact results.

Floats are represented using the scientific notation of a mantissa, “e” and the power-of-10 exponent,
either potentially negative. The use of the “e” notation is the defining syntax for Floats. Examples:
“0e0”, “0.0000005e189”, “1231321.77e-90”.

Mathematically, , so if you don’t like scientific notation, just add “e0” to the end of a number to make it a
floating point literal. I.e., write 123.456 as a float in a DataRoller file as “123.456e0”.

3.8.5 Dates and Times

Date literals start with D' and end with a ' character. Note that double-quotes are not used (they delimit
strings). Values within the delimiters generally follow the ISO date and date-time structure of “yyyy-mm-
dd”. Timestamps use the date format with “T” and the time in “hours:minutes” and optional
“:seconds”. Hours are in 24-hour notation.

In addition to the above, the keywords today, yesterday, tomorrow and now are valid as a Date and
Timestamp with the same delimiters as above. D’now’ is literally this very second. D’today’ is the date
portion of D’now’. If you use today for a database column that supports a time component, the time
component is midnight, meaning today always predates now except at exactly midnight on the wall clock,
when they are equal.

There currently is no time-only data type supported.

Examples:

• D’1900-1-1’

26

• D’2011-12-24T23:59:59’

• D’1998-04-30T8:00’

• D’yesterday’

3.8.6 Booleans

Valid Boolean constants: “true”, “false”.

Example:

Given a PostgreSQL table definition Fill it with values via

create table abc
(
 foo Boolean,
 bar Boolean
)

table abc
{
 foo true,
 bar false
}

Note that true and false are not enclosed in quotes: they are not strings, they are constant values of type
Boolean in DataRoller.

3.8.7 Nulls

Not terribly interesting, but “null” is a keyword in the language and will insert a NULL database value
when used explicitly.

3.8.8 Unsupported Data Types

There is no “bit”, enumeration or MAC address or other data types within DataRoller. This does not
mean that you cannot store them into a database. JDBC drivers and databases themselves are flexible in
converting types when they are unambiguous.

For example, you can do this to a macaddr column and the database will convert the string into the
internal representation:

insert into mytable (mymac) values ('08:00:2b:01:02:03')

27

There are two approaches to handle unusual circumstances, such as populating an Oracle Spatial database
with columns of type SDO_GEOMETRY:

1. Write or use an existing stored procedure in the database to convert from a simple data
type above, into the database-specific internal representation. For Oracle above, the
PL/SQL function SDO_GEOMETRY(varchar2, number) already exists.

2. Use a User-Supplied Java function in DataRoller to accept simple types from above,
and return a vendor-specific internal object, such as an object of type
oracle.sql.ARRAY for structured types in Oracle.

3.8.9 Null Expressions

Each Column Expression has an optional Suffix, which is of the form “null ___%” where “___” is an
integer between 0 and 100. “null 5%” means approximately 5 out of every 100 rows generated by
DataRoller will be NULL values. “null 0%” is the same as not specifying the suffix at all, and “null
100%” is the same as omitting the entire Column Expression.

DataRoller uses a simple random number generator to decide when to leave a column null. This means
for small values of “insert ___ rows” on a table, DataRoller will not generate the correct percentage of
null values.

3.9 Variables

Variables in DataRoller are un-typed places to store pre-computed values for use elsewhere in a
DataRoller project file. To declare a variable, jut assign it a value – there are no separate declaration
statements. To reference a variable, just mention it. References to variables that have not yet been
assigned are taken to have a value of null.

Variable names start with a dollar symbol (“$”) and contain one or more letters or numbers. “$12345”,
“$abcde” and “$c3p0” are all valid variable names. Labels used to name columns may also contain
letters, numbers and optional dollar signs, so a column name that starts with a dollar sign must be escaped
using the square bracket syntax: “$abc” is a variable name, regardless of where it appears. “[$abc]” is a
label (such as a column name) regardless of where it appears.

3.9.1 Assignment

Assign values using the equals sign (“=”) anywhere within a table’s columns. DataRoller will evaluate
each column’s values in the sequence they are listed in the project file, including the occurrences of
variable assignments. DataRoller re-computes each column and variable assignment for each row it
generates.

28

For example,

table testVars
 insert 3 rows
{
 $n = sequence(5), col1 $n,
 $n = $n + 1, col2 $n,
 $n = $n + 1, col3 $n
}

will produce the following rows in table testVars:

col1 col2 col3

5 6 7

6 7 8

7 8 9

The first assignment to $n is sequence(5), which will hand out numbers 5, 6, 7 and so on. Sequence()
is unrelated to any other assignment in this table: DataRoller simply returns one more than the last value
sequence() returned from the last row it generated.

Anything you can assign to a column can be assigned to a variable, including the “null 10%” syntax at
the end. This includes expressions like “case…when…else”, any function, any operator such as “+” or
“*”, or any reference to any variable (including the one on the left-hand side of the assignment).

All of the following are valid variable assignments:

Assignment Description

$a = $b null 50% Sometimes whatever is in variable
$b, sometimes null.

$a = pattern(“B” * random(1..6))

29

Assignment Description

$a = products.prod_id Picks random values from table
products column prod_id

$a = name != “root” && group != “wheel” References columns name and
group in the current row being
generated

$a = if (haspreviousrow())
 “DEFAULT”
 else
 column(policies.label unique per pa
rent)
 end

Assuming this is in a table with a
parent, this will pick a value for $a
of “DEFAULT” for the first row per
parent table row, and then pick a
random policy label (unique) for
each subsequent record per parent
row.

Variables hold a single, scalar value until they are assigned another value. There is no local scope to any
variable, and they have an extent from when they are first assigned to the end of the entire DataRoller
project file. Put another way, variables are global across table sections and hold their values from table
to table.

For example, the following will always put a new value one greater than the previous into table tree,
even though this table is included twice in the project file.

table tree
 insert 4..9 rows
{
 $seq = sequence(),
 id $seq
}

table tree
 insert 10..20 rows
{
 $seq = $seq + 1, // has last value used in table above to start!
 id $seq
}

3.9.2 Variables and randomrow()

The generator randomrow() picks a row at random from the table (or lookup table) specified. The actual
value it returns is a DataRoller internal type that is generally not useful other than with the special
variable syntax below. Assign a variable to randomrow(), and then reference columns from this random
row via the “.” syntax:

30

table myproducts
 child of person on this.person_id = parent.id
 insert 5 rows
{
 $prod = randomrow(products),

 prod_id $prod.id,
 prod_name $prod.name,
 prod_price $prod.price
}

DataRoller will pick a row at random from table products and store all columns in the $prod variable
during the assignment statement. After this assignment statement, the variable $prod contains these
column values until $prod is assigned another value (like when the next row in table myproducts is
generated). This means that each use of variable $prod above (lke $prod.id) will refer to columns from
the same row in table products. This is a great way to coordinate values between two tables, such as in
associative tables.

The “bar” in the “$foo.bar” syntax is a column label like any other. Escape a column that contains
special characters using square brackets, such as “$foo.[$bar]” to reference column “$bar” in variable
“$foo”. Be careful to include the “.” to separate the two portions. “$foo[bar]” is not a valid syntax in
DataRoller: square brackets are used to escape labels, not indicate array reference.

The “$foo.bar” syntax cannot appear on the left-hand side of an assignment: DataRoller does not allow
assignment into a random row picked via randomrow() via “$foo.bar = 123”.

3.10 Embedded SQL

Operational databases are often constructed to help the application maintain valid data “state” through
things like check constraints and triggers. Any modification to data in the database outside the normal
range of operation expected by the application can lead to real problems. For example, having triggers on
table “orders” that insert history records into table “orders_hist” are effective, as long as the target
application performs normal business modifications to the orders table.

There is no expectation that these triggers maintain the history when “delete from orders” executes.
DataRoller can perform disruptive, wide-spread changes to a database outside the bounds of what
application triggers were designed for.

Before running DataRoller, it is a good idea to disable or remove these types of database-resident code so
the database is “opened up” to non-operational access. When DataRoller is complete, put the triggers
back.

In a similar vein, deleting all data from multiple tables and reloading them with a data set of an entirely
different character will render a database inefficient: table and column statistics are not always updated
along with data changes, and a table that does not match its pre-determined statistics will likely produce
inefficient queries.

31

To wit, an orders table with a million rows and a products table with 100 rows will likely start an inner-
join on the products table first, and then perform index unique searches on the orders table. If
DataRoller removes all records from products and orders, and then loads up a million products and
only a few orders, inner joins will still start on the products table taking up dramatically more resources
than needed.

Use DataRoller to replace statistics on tables after new data has been loaded.

3.10.1 Embed SQL in DataRoller File

The method to perform the above is by embedding SQL statements to execute as part of the DataRoller
Project execution. Embedding SQL is easy: use keyword “sql” followed by the statement in double-
quotes. Include a single statement per sql keyword.

sql “create function change_date (d date) returns date return d - 1 day"
sql "set database event log level 0"

sql "set table fireworks read write"
sql "drop index i_fireworks_code"

table fireworks
 insert 100 rows
{
 date_lit random(D’2009-4-12’ .. D’today’ step /hour/),
 bang sql("values change_date(?)" bind date_lit),
 product_code sequence()
}

sql “create index i_fireworks_code on fireworks(product_code)”
sql "set table fireworks read only"

// continue on with other tables ...

sql "drop function change_date"
sql "set database event log level 2"

This uses embedded SQL to

1. Embed a function in the database that can help with inserting test data, and then remove it when
DataRoller is done executing.

2. Turn logging in the database way down so the event logs do not fill up while every row is deleted
and a new set is inserted.

3. Allow modifications to table fireworks, which is usually read-only.
4. Remove an index and rebuild it afterward to speed up execution of DataRoller.

32

3.10.2 Reference External SQL File

Embed simple SQL statements directly in a DataRoller project file with the sql keyword. Collect larger
SQL statements, blocks of code or larger sequences of statements in a separate “.sql” file and reference
this file from within the DataRoller project file.

• sql “update mytbl ...” will execute the string as a single SQL statement
• sql file “myfile.sql” will execute each statement in file myfile.sql

Each separate SQL statement is executed within an external SQL file. DataRoller does not parse the SQL
syntax or otherwise understand the structure of an external SQL file. It makes rudimentary decisions
about where one statement ends and another begins, and can only handle a limited set of comment
placements without being confused.

Rules for assembling an external SQL file for DataRoller:

• C-style comments are not supported in any capacity “/* … */”
• “#”, “--” and “//” comments are supported if they have nothing but whitespace to their left (no

executable SQL statements can occur on a line with a comment for DataRoller)
• A SQL statement may span multiple lines as long as there are no blank lines within it
• Use one or more blank lines to separate SQL statements, optionally with one or more lines with

nothing other than “GO”

Example:

sql "insert into states (abbrev, name) values ('ca', 'California')"

table states
 insert 2 rows
{
 ...
}

sql file "cleanup.sql"

File cleanup.sql:

-- Fix any abbreviations that are lower-case
update states
 set abbrev = upper(abbrev)

#
comment
#
create index i_states_abbrev on states(abbrev);

33

3.11 A Note on File and Folder Names

Several Generators require the name of a file or folder to read. The examples above show a simple file-
based string like “C:\data\myfile.txt”. DataRoller has an internal syntax for describing files and
folders that extend this to support looking in zip files and searching the Java classpath.

Basics of DataRoller Files and Folders:

1. If it starts with “classpath:”, everything else is searched in the Java classpath
2. If it contains an exclamation point (“!”), the left-hand side is a zip file to open, and the right side

names the thing in the zip file to retrieve.
3. If DataRoller is expecting a folder, but a zip file is specified, DataRoller will open the zip file and

consider all files in the zip archive to be the files in the folder to use.
4. If the above do not apply, just consider the string to be a file or folder on disk.

Things in DataRoller that work this way:

Construct Context Examples

lookup table File lookup table mytbl = “prod_dump.zip!recs.xls”

Read recs.xls from the zip archive prod_dump.zip
and use it as a pseudo table in DataRoller.

folder() Folder folder(“C:/mydata”)

 Open folder C:/mydata on disk and read in all files.
folder(“C:/mydata.zip”)

 Open the zip file and consider its contents to be the
files to
 process.

filerow() File filerow(“classpath:data.txt”)

Search the classpath for file data.txt and read it in.

xpath() File xpath(“a.zip!b/c/d.xml”, “/root/child”)

Read the file d.xml in folder b/c/d inside zip archive
a.zip as a source of XML.

When using “!” to name a zip file and an internal entry, the zip file can be an absolute or relative path.
Zip files with a relative path (or no path) are rooted in the same folder as the input project file. This way,

34

a project file can be kept with all zip and other files that it depends on. The entire directory of files can be
moved around together.

3.12 Lookup Tables

The job of generating test data or demo data is rarely an exercise in filling random bits and bytes into
columns. One of the simplest ways to fill a database with production-looking demo data is to go raid the
production database! DataRoller has the ability to reference Excel spreadsheets as if they were tables.

For example:

• Export important lookup tables from a production database or other source and store them in Excel
sheets.

• Reference the Excel “tables” in DataRoller via the “lookup table” syntax.
• Use these table aliases in Generators like randomrow() and column() below.

Create an alias within DataRoller called “mytbl” that refers to the first worksheet in file “people.xls”
which resides in ZIP file “myfile.zip”:

lookup table mytbl = “myfile.zip!people.xls”

Because of the way other parts of the system work, don’t pick table aliases that are the same as real tables
in the database. The lookup definition here will make the real database table unreachable in things like
column() and randomrow().

Excel files must be “.xls” format, not “.csv” or “.xlsx”. This is another way of saying the file must be
in “Excel 97-2003 Workbook” format. The first worksheet will be used, and all other worksheets will be
ignored. The first row of the worksheet should contain the column names, and all other rows should
contain the data.

Because of a limitation in Excel internal format, DataRoller cannot easily tell the difference between
floating-point non-precision real numbers, “decimal” precision numbers and integers. So, DataRoller
takes the most liberal interpretation and reads in all numbers as floats. To override this behavior, suffix
the header cell name with “#” and a code from the table below.

35

Suffix Meaning

#D Assumes each cell in the column is a number
representing a Date or Date-time value.

#F Default for numeric columns, uses a floating-point
value for each cell in the column.

#I Assume each cell in the column is an integer
number.

If a cell is formatted in Excel as a Text cell, any suffixes above are ignored and the cell value is taken as a
string.

36

4 Generators
Generators come in several flavors:

Random Data: Generator that picks values randomly from a range you specify.

• Random values picked from a list or explicit range of values
• Large binary data for BLOBs

Structured Data: Generator creates data following a plan you describe.

• Strings following a certain pattern, or Lorem Ipsum text
• Sequential numbers or dates

Lookup Data: Data pulled from another column, file on disk, or database location:

• Foreign key lookups into other database tables
• Random records (rows) picked from a text file

Operators: Infix symbol that combines two Expressions into a new Expression:

• “<”, “>=” and other comparators to compare values
• “+”, “-”, “*”, “/”, and “%” for typical math operations

Conditionals: “if then else” logic to adjust processing based on conditions:

• “if (cond) … else … end” syntax similar to Java or C++
• “case when cond1 then stmt1 … else stmtn end” syntax similar to SQL

Functions: Java code that creates new data from zero or more Generator Expressions:

• Math and number functions like sin(), cos() and tan()
• String functions like upper(), lower() and replace()

User Functions: Java code written by you and invoked by the DataRoller engine:

• Write your own functions in Java that generate strings, numbers, dates, etc.
• DataRoller will load your jar file and invoke your methods

37

4.1 Random Data

The hallmark of all random value Generators for basic types is “random()” with values using “..”
syntax:

• random(1..10)

• random(1.50 .. 9.25)

• random(-5.7e10 .. -1.2e10)

• random(D’1985-1-1’ .. D’1985-12-31’)

For obvious reasons, the first term has to be less than or equal to the second term, or the range is invalid.
Values are taken at random from the range, including both the lower and upper bound values (the range is
inclusive). Duplicates are likely generated. The distribution of random values is approximately linear,
given a large enough number of rows to generate. For small row counts, the distribution is likely non-
linear, and many valid values in the range may not be generated while others are generated more than
once.

There is no version of random() that supports Boolean types; use choice(true, false)instead.

4.1.1 Random Integers

In addition to the basic “random(1..10)” notation, a step can be included to change which values are
generated. “random(1..10 step 2)” means 1, 3, 5, 7, and 9 are generated: start at the low bound, and
only pick values that are reachable by 2s. Note that “step 2” has nothing to do with even, or “divisible
by 2”: it is something like an increment value. “random(2..10 step 2)” generates random values in the
set 2, 4, 6, 8, 10.

DataRoller will never generate a value outside of the low and high bounds, even if the step doesn’t
exactly land on the high bound. For example, “random(6..14 step 3)” generates 6, 9, 12 and never 15
because 15 > 14.

The step can be any positive value (zero and negative numbers are not allowed), even one larger than the
entire range. The expression “random(89..226 step 10000)” generates random values starting at 89
and all values 10000 from that initial value up to value 226. In other words, it always generates the single
value 89 because 89 + 10000 > 226. This has the side-effect that no value for step will ever lead to an
empty set of values to pick from at random. The lower bound is always in the set of valid values.

If a random integer expression is suffixed with “unique”, it will never generate the same value twice. If
the number of valid possible values is less than the number of rows to be generated for the current table,
an error will result when this Generator runs out of values.

38

When both “step” and “unique” or “unique per parent” are included, “step” must appear first.
The following are valid:

• random(1..100 step 2)

• random(1..100 unique)

• random(1..100 step 2 unique)

4.1.2 Random Decimals

Random decimal values are syntactically the same as integers above with decimal literals, except:

• The “step” clause is required, and
• The “unique” and “unique per parent” suffixes are not supported.

The step clause is required because it is not always obvious what the implied step is: “random(1.00 ..
1.4)” could be {1.0, 1.1, 1.2, 1.3, 1.4}, or something much larger such as {1.00, 1.01, 1.02, 1.03 .. 1.38,
1.39, 1.4}.

4.1.3 Random Floats

Due to the continuous nature of Float values, “step” is not supported. “1.54e-106” as a step could
easily lead to round-off values, resulting in strange results. This is also against the general use of floating-
point, continuous numbers.

Specify random float values with a simple low … high range, such as “random(1.1e4 .. 2.2e5)”.

Both “unique” and “unique per parent” are not supported for floating-point ranges.

4.1.4 Random Dates and Timestamps

Dates and Timestamps contain discrete values and therefore support “step” and “unique” clauses, but
their syntax is different than above. The date or Timestamp range is just a low value “..” high value.
The range is a notation of which dimension is the “cut-off” for the set of valid values. I.e., “step
/hours/” means generate values such that the minutes and seconds components are always zero. The
forward slashes are required.

The default step is “step /days/”, meaning the time is always zero (midnight).
“random(D’1900-1-1’ .. D’1900-12-31’)” means generate Timestamps between those two dates,
with hours, minutes and seconds zero.

39

The valid values for step are “/years/”, “/months/”, “/days/”, “/hours/”, “/minutes/” and
“/seconds/”. All values supplied in the low and high bound must not have a value. For example, “step
/hours/” means you cannot specify a value for minutes or seconds in the low or high bound. Since some
step values (like “/years/”) run into syntax problems with the date literals, “1” can be used for month
and day.

Step Template for Low and High bounds Interpretation

Seconds None – use any date, unrestricted

Minutes D’nnnn-nn-nn’
D’nnnn-nn-nnTnn:nn’
D’nnnn-nn-nnTnn:nn:00’

Seconds must be zero when specified.

Hours D’nnnn-nn-nn’
D’nnnn-nn-nnTnn:00’
D’nnnn-nn-nnTnn:00:00’

Seconds and minutes must be zero when
specified.

Days D’nnnn-nn-nn’
D’nnnn-nn-nnT00:00’
D’nnnn-nn-nnT00:00:00’

Entire time component must be zero
when specified

Months D’nnnn-nn-1’
D’nnnn-nn-1T00:00’
D’nnnn-nn-1T00:00:00’

Because the syntax for a date does not
allow omitting the day, set the day to 1.
I.e., “May 12” is not a good bound when
you only want months. The date returned
always has a day-of-the-month set to 1.

Years D’nnnn-1-1’
D’nnnn-1-1T00:00’
D’nnnn-1-1T00:00:00’

Like above, use “1” for the month
number. All dates returned have a
day+month of January 1st.

Don’t forget that “today” always has a time component of all zeros. “now” is this exact point in time, and
so probably has a non-zero value for hours, minutes and seconds. This means
“random(D’today’..D’now’ step /minutes/)” or any step other than “/seconds/” will fail because
today will have at least one non-zero time component.

Both “unique” and “unique per parent” clauses are supported and may only appear after the step
clause.

4.1.5 Choice

The choice() generator will pick a value at random from the list of explicit values included directly in
the declaration. Specify a list of any valid values, and choice() will pick values at random. The default

40

distribution is linear: each value listed in choice() is picked with equal probability. Each item listed in
choice() can also include a relative weight so some values will be chosen more frequently.

If no weight is included, it is assumed to be 1.

Examples:

choice(0xff0000,
 0x00ff00,
 0x0000ff)

Pick any of the three values at random, each with equal
probability.

choice(“open” weight 6,
 “closed”)

“open” chosen around 6 times more frequently than
“closed”.

choice(“A” weight 8,
 “B” weight 3)

8 + 3 = 11, so 8 times out of 11 “A” is chosen and 3
times out of 11 “B” is chosen.

choice(“Jan” weight 31,
 “Feb” weight 28)

Using this same approach, pick a month based on the
distribution of possible days. January has 31 days in it,
and February usually has 28. So, “Jan” is chosen
slightly more frequently because there are more days in
January then February.

4.1.6 BLOB

Database column types accepting binary data include binary, long, long raw, blob, image and others.
The primary way to put binary data into these fields is to use folder() above with a folder full of non-
text files. This approach leaves the database in a state where the application can still execute. Imagine
the results of putting random bits into a column that the application considers an image! The application
would not function correctly.

Use the blob() Generator for creating massive amounts of random bytes to store into database columns
that you don’t care about. This is a good approach for truly maxing-out a database in preparation for load
testing: firing queries at a database with gigabytes of random data to chew on.

Pass the number of bytes to generate as a range to blob().

Example:

blob (1000000 .. 1000000000) // generate between 1MB and 1GB of random data

41

Implementation Note. DataRoller does not stream random data into the database. It creates the entire
blob byte array in memory first, and then sends it to the database. This means the complete generated
BLOB value exists in memory. Asking for a BLOB of size 30 GB will likely crash your Java VM without
special consideration.

4.2 Structured Data

4.2.1 Lorem Ipsum

Lorem Ipsum refers to generated nonsense words that are organized in a way that resembles a natural
western language without diacritical characters. Sentences start with capital letters and end with periods.
Sentence lengths tend to follow general western word counts. Lorem Ipsum is used to populate areas that
should hold prose without being distracting to the eyes: the text does not intrigue the “reader” or pull their
gaze from the overall appearance of the screen.

Sample Lorem Ipsum text:

“Lorem ipsum dolor sit amet, consectetur adipiscing elit. Ut mauris augue, fringilla at
lacinia vitae, convallis in est. Sed molestie dictum sem, eget pulvinar est fermentum sed.
Vestibulum eros ipsum, interdum id pulvinar et, vehicula ac dolor. Integer viverra, libero
vitae egestas scelerisque, odio lorem dictum lectus, id egestas nibh felis mollis augue.”

Use “lorem()” to generate random strings to populate descriptive database columns. Pass a range to use
for the generated lengths, such as “lorem(50..900)” to generate a string of between 50 and 900
characters that has sentences of random-looking text.

This Generator does not just spit out the same text each invocation. There are some nice subtle features in
here:

• The industry-standard Lorem Ipsum text contains only a limited number of nonsense words.
DataRoller has record of the complete set of Lorem Ipsum words, and the relative weighting for
how often they appear in the standard text. Lorem() uses these weights to construct a string of
Lorem Ipsum text following the standard distribution without being a copy of existing text. Each
row gets distinct text.

• Lorem() first picks a random length to generate, and then adjusts the sentence lengths near the end
of the generated string so it ends as close to the chosen length as possible without going over, and
without having a final sentence too short (sentences are between 5 and 12 words each).

42

4.2.2 Sequences

Sequences serve to return a different value for each row, each value one greater than the last. For
numbers, this is straight-forward. For Dates and Timestamps, it uses an increment time duration for the
same effect.

Integer Sequences like “sequence(100 step 10)” start at 100 and count up with each subsequent value
10 larger than the last. The step is optional and defaults to 1. If both the starting value and step are
omitted (“sequence()”), a starting value of 1 and step of 1 are used.

The step value may be positive or negative, but not zero.

Sequences do not “wrap” or stop at zero. “sequence(3 step -1)” returns {3, 2, 1, 0, -1, -2, -3, …}.

Decimal and Float Sequences must always supply a step.

Because sequences generate a new number each invocation without wrapping, they are implicitly unique.
The “unique” clause is not supported as it would be redundant.

The optional “unique per parent” clause is supported. A sequence with “unique per parent” will
reset back to the starting value for each new parent row created.

4.2.2.1 Date Sequences

Date sequences must supply a starting Date or Timestamp and may optionally include a step. Steps
specify a Time Duration that is added to each previous value to compute the next value. Quick example
of a sequence with a Time Duration:

sequence(D’1920-7-19’ step /7 days 6 hours/)

When omitted, the default Time Duration is “/1 day/”.

A Time Duration can specify a value for years, months, days, hours, minutes or seconds, or any
combination of the above. Multiple entries must appear in coarsest to finest values. I.e., years before
anything, days before hours and so on. “/1 month/” applied to D’2000-1-1’ will yield D’2000-2-1’,
D’2000-3-1’, D’2000-4-1’, D’2000-5-1’, and so on. Notice that the day component of the date
remains the first day of each month! A month in general concept is not always the exact same duration.
For DataRoller “/1 month/” means move forward to the next month with the same day. This same
concept applies to years (not always 365 days).

When incrementing by “/1 year/” for example, there is no requirement that all finer components be
zero. So, “sequence(D’1994-2-14’ step /1 year/)” will return Valentine’s day on each subsequent
year.

43

This works nice for things like “quarterly”: “sequence(D’2003-1-1’ step /3 months/)” returns
January 1st, then April 1st, then July 1st, then October 1st each year (the first day of the next quarter).

A fully-specified Time Duration:

/ 1 year -2 months 3 days -4 hours 5 minutes -6 seconds/

To compute the next value in a sequence, the previous Timestamp is moved by each component of the
Time Duration. That is, the previous value is moved forward 1 year, then back 2 months, then ahead 3
days, and so on.

All entries in a Time Duration must not cancel each other out. For example, the following are all invalid
Time Durations because they will not have a net effect on the previous value when computing the next
value:

Expression Meaning

/1 year -12 months/ Always cancel each other out

/1 month -30 days/ Only works when you cross from one month to
another that has 28, 29 or 31 days.

Causes an error for April 1st: 4/1/2000 + 1 month =
5/1/2000 – 30 days = 4/1/2000. This would always
generate the same date!

/-1 day 24 hours/ Always cancel each other out

/1 month -29 days/ This will generate values successfully until it
encounters a leap year, where it will fail when it
crosses February.

/-1 year 365 days/ Will fail on all common years (non-leap years).

/1 hour -59 minutes -60
seconds/

Will always fail: all three values always add up to a
net of zero.

Hours, minutes and seconds always relate in 1:60:60 ratio, so there are no interesting cancellations like
leap year above.

44

Note that the order in which components are applied is significant in a few miserable cases:

Specification sequence(D’2010-6-1’ step
/1 month -30 days/)

sequence(6/1/2010 step
/-1 month 30 days/)

Start with the first date 2010-6-1 2010-6-1

Apply the Month first 2010-7-1 2010-5-1

Now apply the Days 2010-6-1 2010-5-31

Result Same as start! Error! Not the same, no error

4.3 Column

Generator column() can be used to reference a value in another column, optionally in another database
table or lookup table. Column() is a collection of similar generators that all share a common syntax.

Column generators:

Column Generator Use

column(gate_num)

gate_num

Current-Row Reference
Evaluates to the value in the current table in the
current row that was just generated.

The column() can be omitted.

column(gate_num.level)

gate_num.level

Separate Table Reference
Evaluates to a random value from the column in a
separate table or external file (lookup table).

The column() can be omitted.

column(parent.level)

parent.level

Parent Table Reference
Evaluates to the column in the specific row in the
parent table. This is not the same as the Separate
Table Reference above! See below for details.

The column() can be omitted.

45

As a shortcut because the above column references are so prevalent in DataRoller files, the “column()”
syntax can be omitted as long as “unique” is not present. The column() syntax is required when the
“unique” or “unique per parent” feature is used.

table products
 child of names on . . .
 insert 10 rows
{
 order_id sequence(),
 inv_type pattern(“U”),
 invoice_num “INV-” + inv_type, // inv_type references col above
 prod_id apps.id, // id col in table apps
 customer parent.last_name // last_name column from names table
}

A column name or table name that clashes with a DataRoller reserved keyword can be escaped with
square brackets:

table [sequence]
 child of ...
 insert 10 rows
{
 [bind] sequence(),
 key “A” + format([bind], “000”),
 customer parent.[folder]
}

In Diagram Form

Table names refers to an
external Excel sheet.

parent.brkcode references the
single parent row in table
brackets for every row in
orders, column brkcode.

inv_type by itself refers to the
inv_type column in the current
row being generated.

products.id refers to a random
value for column id in table
products.

names.last_name refers to a
random value from Excel sheet
names (see lookup table at top)
column last_name.

46

4.3.1 Current-Row Reference

The simplest invocation column() is to name another column in the table currently being processed. This
will simply copy the value from that column in the current row being assembled by DataRoller. I.e., this
value exists in DataRoller and will soon be in the database after DataRoller has assembled all values for
the current row. Because of this, do not name a column that appears in the current table further down the
DataRoller project file: the value for subsequent columns have not been generated at the time that
column() is processed. Obviously, column() cannot refer to itself.

Neither “unique” nor “unique per table” are supported since a Current-Row Reference applies only to
the current row about to be inserted.

4.3.2 Separate Table Reference

To reference a column in another table, invoke column() passing both the table and target column with a
“.” separator. For example, column(products.name) refers to column name in the products table.
When invoking column() with a table and column name, column() picks a random row from the target
table and uses that column’s value.

The table name can be the alias for a lookup table defined at the top of the DataRoller project file, or a
real table in the database. When the first invocation is constructed, the entire target table is read into
memory, and this memory copy is used for the rest of the DataRoller project run. This means referencing
very large Excel files (lookup tables) or database tables with a large number of rows or large columns
(LOBs) may lead to memory problems.

Because tables are completely read into memory upon first need, self-referencing tables will not work the
way you might think. Consider this:

table employees
 delete all
 insert 100 rows
{
 emp_id sequence(),
 name filerow(“names.txt”),
 boss_id column(employees.emp_id) // doesn’t work the way you want this to!
}

This is an attempt to build a random hierarchy by putting a previously-generated primary key into the
boss_id field. While building the first row to be inserted into the database, DataRoller will cache the
entire employees table in memory, which currently has zero rows (note the “delete all” above!) and so
will cause an error.

47

The sql() generator might be considered as a possible solution too:

table employees
 delete all
 insert 100 rows
{
 emp_id sequence(),
 name filerow(“names.txt”),

 // probably not what you want:
 boss_id sql(“select emp_id from employees order by RAND() limit 1”)
}

This too is problematic. DataRoller will batch up insert statements and send them to the database in
groups. The script above will only consider rows already in the database. DataRoller will create the first
fifty rows all of which have null for boss_id since no data has been written to the database yet. When
DataRoller creates row number fifty-one, there will then be fifty rows in the table for consideration.

Both “unique” and “unique per parent” are supported. When using one of these clauses, the
column() syntax must be used. “column(model_types.name unique)” is correct; just
“model_types.name unique” is a syntax error.

4.3.3 Parent Table Reference

A table definition that has a “child of” clause may use “column(parent.foo)” where foo is the name
of a column in the table listed in the “child of” clause. “parent” is a DataRoller keyword and is
required.

Any column in the parent table may be used, even columns not present in the DataRoller project file!
DataRoller will execute a separate SQL select statement to retrieve a value for every row in the child
table. This is significant if the parent table has triggers that create or alter data in the database table, or if
there is a SQL statement after the parent table in the DataRoller project file that alters column values.

Consider the following example:

table accounts
 insert 100 rows
{
 username pattern(“L”) + filerow(“names.txt”),
 password_plain pattern(“L” * random(8..25))
}

sql “update accounts set password_cipher = PASSWORD(password_plain)”

table login_probs
 child of accounts on this.username = parent.username
 insert 0..1 rows
{
 expected_passwd parent.password_cipher,
 actual_passwd pattern(choice(“L”,”U”,”N”) * random(8..10))
}

48

The accounts.password_cipher column is computed by calling a database-resident function
PASSWORD() on the password_plain column (maybe because DataRoller does not have this ability).
Table login_probs references this via the parent.password_cipher reference, even though column
password_cipher does not appear as a column in the DataRoller file above. DataRoller simply issues a
SQL select similar to the following:

select password_cipher from accounts where username = ?

Using the parent keyword is not the same as just using the actual table name of the parent table.
“parent.foo” is nothing at all like “names.foo” even when the current table has clause “child of
names”. The parent keyword means that DataRoller will follow the foreign key in the child table to the
parent key in the parent table, and select the column in question. Using the actual table name of the
parent table will select a value from a random row in the parent table, regardless of the foreign key in the
child table.

In the example at right, parent.person and
pledges.person appear to reference the same
thing in parent table pledges. They do both
name the same column in the same table, but
“parent” keyword has different semantics from
just using the name of the table.

parent.person copies the value from the
parent table, and then initials() converts the
full name to just the 2 or three starting letters.

pledges.person just picks a random value
from table pledges.

Also note that “initials” is the name of a
function, but function names are not DataRoller
keywords, so the column named “initials”
does not need to be escaped as “[initials]”.

DataRoller processes each table in the project file to completion before starting the next table in the
project file. This rule also applies to tables with “child of” clauses: DataRoller will complete all
processing for the parent table first, and then continue with each child table separately. This is important
if you directly reference a parent table in a child table via the parent table name (the “pledges.person”
above instead of “parent.person”). Using “pledges.person” has every row from table pledges
available to it.

A table in a DataRoller project file may have more than one child table in the project file.

Both “unique” and “unique per table” clauses are not supported for Parent Table References since
they directly reference a single row in the parent table.

49

4.4 Lookup Data

4.4.1 File Row Lookup

Filerow()will read in the entire contents of a file passed in, and pick rows at random to insert into the
database. The file specified must be a text file with typical line breaks (UNIX or DOS format).

Filerow()is typically used with a large file of “boilerplate” text or common words and phrases like last
names, cities, countries and so on.

Both “unique” and “unique per parent” clauses are supported for filerow().

4.4.2 Folder Contents Lookup

The folder() Generator will retrieve the contents of files on disk and use them as values to insert into
database columns. This is a good choice for columns that store images, Microsoft Word or Excel
documents, large XML strings, or other structured data that you might have on hand. The Generators
above are designed to create data from nothing based on a structure you put into the DataRoller Project
file. Folder Contents Lookup and other Generators below are designed to use content you already have on
hand.

Pass the name of the folder on disk where target files are kept. The folder() generator will pick a file at
random for every row inserted. The value inserted into the database is the entire contents of the file (not
the name of the file in question).

Data is retrieved from the target files without any byte manipulation, line-termination conversion or
national character set changes for files not ending with “.txt”. Files ending with “.txt” are treated
differently. “.txt” files are read in as strings and inserted into the database as strings (with line-
termination characters intact).

Use a folder containing only “.txt” files to populate columns of type clob, long varchar and such.

Use a folder containing no “.txt” files for blob, raw, long raw, binary and such.

50

C:\data\images

 monalisa.jpg
 starrynight.jpg
 waterlilies.jpg

C:\data\pamphlets

 monalisa.docx
 starrynight.docx
 waterlilies.docx

C:\data\specs

 monalisa.xml
 starrynight.xml
 waterlilies.xml

create table christies_inventory (
 forsale_id number(8) primary key,
 picture image not null,
 pamphlet long raw not null,
 spec_xml clob not null
)

table christies_inventory
 delete all
 insert 3 rows
{
 forsale_id sequence(),
 picture folder(“C:/data/images”),
 pamphlet folder(“C:/data/pamphlets”),
 spec_xml folder(“C:/data/specs”)
}

This is a simple example to illustrate use. The table includes values for all three folders on disk, but
“folder()” as used above does not correlate anything: a single row might have monalisa.jpg,
starrynight.docx and waterlilies.xml in it. Folder() chooses values at random, so some values
may be used more than once and others not used at all.

Folder() supports both “unique” and “unique per parent” clauses.

4.4.3 XML File Lookup

Like filerow()above, xpath() will read in a file and serve out contents randomly. xpath() reads in an
XML file and will retrieve strings based on a supplied XPath expression. The XPath expression must
match text elements directly, or Nodes that have text values (such as
“<name>Malcolm Reynolds</name>”).

51

Consider the following XML snippet passed to xpath():

<bill session="107" type="sj" number="23">
 <titles>
 <title type="popular">Go get em!</title>
 <title type="official">Military Force Authorization</title>
 </titles>
 <sponsor id="300031" />
 <actions>
 <vote date="1000440000" how="roll" roll="281" where="s" />
 <vote date="1000520280" how="without objection" where="h" />
 <enacted law="107-40" date="1000785600"/>
 </actions>
 <subjects>
 <term name="Defense policy"/>
 <term name="Air piracy"/>
 </subjects>
 <summary>Authorizes the President to go get ‘em.</summary>
</bill>

Expected behavior for various XPath expressions:

XPath Sample Matched Value xpath() value inserted into
database

/bill/@session 107 107

titles (nearly everything) Error – need to match text or
a text node.

/bill/summary <summary>
 Authorizes the
President
 to go get ‘em.
</summary>

Authorizes the
President to go get
‘em.

term/@name "Defense policy” and
"Air piracy"

"Defense policy” or
"Air piracy"

/bill/sponsor <sponsor id="300031" /> Error – no text matching this
xml .element

Both “unique” and “unique per parent” clauses are supported for xpath().

52

4.4.4 randomrow()

Randomrow() will pick a row at random from the named table (or lookup table) and return a DataRoller-
internal structure to hold the value for each column. This returned value is useful only with the
“$foo.bar” variable syntax. This is typically used when multiple values from another table need to be
included and they all need to be from the same row. Use column() to pick multiple values from another
table when the values do not need to be from the same row in the other table.

Using randomrow() assures all values are from the same row:

Each column reference picks random values independently:

The table named in randomrow() can be an alias for a lookup table defined at the top of the DataRoller
file or the name of an actual database table. Because SQL does not have a built-in database-independent
way to efficiently pick a random row from a database table, and because there is the potential for multiple
tables that might need to access a table, the table named in randomrow() is read completely into
DataRoller memory. Random rows are served from this in-memory cache of the table. Like column()
above, this means that using randomrow() to refer to a table that is undergoing changes via DataRoller
may lead to problems: the table is cached on first need. If DataRoller subsequently changes the in-
database table, the in-memory cache of the table is not updated. Using randomrow() with a very large
table, or a table containing large values for LOB columns may lead to memory exhaustion.

53

Both “unique” and “unique per parent” clauses are supported for randomrow(). Each occurrence of
randomrow() with “unique” or “unique per parent” select their rows independently of each other, so
adding a “unique” clause does not guarantee that both randomrow() occurrences are mutually unique.

Put another way, the following does not guarantee that a single row in table race won’t have the same
values for $start and $end. Variables $start and $end may both point to the same row in location,
both coincidentally picked at random.

table race
 insert 50 rows
{
 $start = randomrow(location unique),
 $end = randomrow(location unique),

 start_lat $start.latitude,
 start_lng $start.longitude,

 end_lat $end.latitude,
 end_lng $end.longitude
}

4.4.5 Previous Row

DataRoller maintains the last row it inserted to the current table so its values can be used by the
subsequent row it inserts. There are two functions to accomplish this:

• haspreviousrow() which returns true if DataRoller has already inserted at least one row to this
table (but see below for child tables)

• previousrow(mycol) which returns the value in column mycol from the previous row

As a best practice, use an “if” statement to separate what DataRoller should do on the first row it inserts,
and for every other row it inserts:

table race_findings
 insert 3 rows
{
 place sequence(), // 1st place, then 2nd place, ...
 person filerow(“names.txt”),
 points if (haspreviousrow())
 previousrow(points) – random(1..5) // runners up below by 1 to 5
 else
 random(100 .. 120) // first place scored 100+ points!
 end
}

In the above example, a table holds the points scored by the top 3 contestants. To make the scores
realistic, the first place holder has the most points, and each runner-up has between 1 and 5 fewer points.
By using data keyed off of the previous row inserted, this assures that the third place winner doesn’t have
more points than the second or first place winners. Each value is computed to be a little less than the
previous row DataRoller inserted.

54

DataRoller always resets the previous row to empty when it is about to insert the first row into any table.
Put another way, the data from the last row of the previous table is not available to the first row of the
next table in the DataRoller script file!

The real power of previousrow() is how it operates on a table with a “child of” clause: DataRoller
resets every time the parent table row changes. Function haspreviousrow() is false exactly once for
every unique row in the parent table.

To extend the example above, consider race_findings with a parent race_schedule table that contains
a record for every race held. Function haspreviousrow() is false for the first row inserted into
race_findings for each record in race_schedule.

table race_schedule
 insert 50 rows
{
 race_id sequence()
}

table race_findings
 child of race_schedule on this.race_id = parent.race_id
 insert 3 rows
{
 place sequence(1 unique per parent), // 1st place, then 2nd place, ...
 person filerow(“names.txt”),
 points if (haspreviousrow())
 previousrow(points) – random(1..5) // runners up below by 1 to 5
 else
 random(100 .. 120) // first place scored 100+ points!
 end
}

That’s it! Function haspreviousrow() is false for each row in race_schedule because DataRoller
resets the previous row internally to empty whenever it moves to another parent record.

The table below contains data from the above DataRoller script. DataRoller resets the previous row to
empty each time it begins a new race in table race_findings it

race_id place person points

1 1 Chloe 101 previous row reset: first row

1 2 Mary 99

1 3 Abdul 96

2 1 Chris 115 previous row reset: new parent

2 2 Arlene 111

2 3 Greg 98

3 1 Nate 105 previous row reset: new parent

55

race_id place person points

3 2 George 100

3 3 Simon 94

A great use for the DataRoller previous row feature is generating routing data for use in geospatial
applications. Consider a data set of tagged elk that wander around the general Calgary area. The data set
has a table for each tagged elk and tracks their position via a GPS signal in their collar tag. Their position
is recorded each day for a two week period, and the results are charted on a map.

table elk_routes
 child of elk on this.elk_id = parent.elk_id
 insert 14 rows
{
 route_seq sequence(1 unique per parent),

 latitude if (!haspreviousrow())
 random(50.0e0 .. 51.46e0)
 else
 previousrow(latitude) + random(-0.06e0 .. 0.06e0)
 end,

 longitude if (!haspreviousrow())
 random(-116.2e0 .. -112.11e0)
 else
 previousrow(longitude) + random(-0.06e0 .. 0.06e0)
 end
}

Column route_seq holds numbers 1 through 14 for each tagged elk (parent table). This is the tracking
day. Latitude and longitude for the first row of each elk is computed randomly near Calgary in the “else”
clause above. Since DataRoller returns false for haspreviousrow() for the first row of each parent table
row. For each subsequent day, DataRoller picks a latitude and longitude value that is up to 0.06 degrees
away from the place that the elk was yesterday (previous row).

“previousrow(longitude) + random(-0.06e0 .. 0.06e0)” means pick the previous row’s longitude
value and move up to 0.06 degrees west or east.

56

If you plot the elk_routes table as lines on Google Maps, you would see something similar to this:

Map image generated from http://maps.google.com.
Check out their excellent API at http://code.google.com/apis/maps/

4.5 SQL

The other Generators in DataRoller attempt to provide added value and abstract away implementation
details to make writing project files fun for all. The sql() generator is the “trap door” of Generators: you
pass in an arbitrary SQL statement to send to the database completely untouched by DataRoller.

table whatever
 insert 5 rows
{
 mycol sql(“select count(*) from othertable”)
 …
}

The statement itself can be any valid SQL statement provided that it returns a result set with tabular data
(not an XML result set or a stored procedure that cannot be invoked with “run this query” semantics).

The sql() Generator will pick the first row returned and return the first column in the result set. If there
are no rows returned, sql() returns a NULL value.

57

http://code.google.com/apis/maps/
http://maps.google.com/

The sql() Generator can parse queries requiring bind variables, and bind value from the current row.
Call sql() with a string query, “bind”, and a list of columns to bind:

table person
 insert 18 rows
{
 zip_code column(rates.zip),

 age random(21..90),
 price sql(“select price
 from rates
 where zip = ? and age_low <= ? and age_high >= ?”
 bind zip_code, age, age)
}

In this example, imagine a rates table that has a record for every combination of zip code and age range,
such as an insurance company might keep. A record of zip 90120 with age range 21-30 would have a
record with a high rate.

Populate the price column for a person by looking up their rate in this table. Bind the current zip and age
being generated so the value chosen is realistic.

sql() only supports using current column names in the table being processed for the “bind” clause.
Variables may not be used in the bind clause.

Note: unlike other Generators, sql() will execute the query once for every single row inserted, with no
regard for caching data. This Generator exists as a “bail-out” to take over manual control of retrieval
when no other Generator will suffice. Because of this, DataRoller does not attempt to optimize or
otherwise improve the execution time of sql().

4.6 Operators

Operators are punctuation symbols used in infix notation to combine Generators together. They look and
(mostly) act just like other typical programming languages, so just code what you think works and you’re
probably right.

The following table lists all operators in precedence order with a quick reference description:

Precedence
Order Operator Quick Description

1 || Logical OR on Booleans only

2 && Logical AND on Booleans only

58

Precedence
Order Operator Quick Description

3 ! Logical NOT on Booleans only

4 ===
!==
==
!=

String equals (ignores case and whitespace)
String not equals
Logical equals between arbitrary types
Logical not-equals between arbitrary types

5 <
<=
>
>=

Less than
Less than or equals
Greater than
Greater than or equals

6 +
-
&

Addition for numbers, strings or dates
Subtraction for numbers, strings or dates
String concat with intervening whitespace

7 *
/
%

Multiplication or string repetition
Division (integer or real-values)
Modulus (valid only for integer numbers)

A few other important notes:

• Everything is left-associative: 6 – 4 – 1 is 1, not 3.
• Use parenthesis if you want to change the order of operations: 6 – (4 – 1) is 3, not 1.

Operators with higher Precedence numbers from the table above will bind lower on the parse tree.
Examples:

• 1 > 4 && 5 <= 6 means (1 > 4) && (5 <= 6)
• ! a && b || ! c means ((!a) && b) || (!c)
• 1 + 2 – 3 means (1 + 2) – 3 since they are the same precedence level, the left-associativity

rule applies to disambiguate them

If you’re a real geek, check out the BNF reference at the end of this document for the gory details.
DataRoller is a LL(1) grammar.

59

4.6.1 Types, Nulls and No Short-Circuit Logic

Operators do not follow short-circuit behavior. Each operator will evaluate all parts first, and then apply
the operation. For example, “!a && b” will compute the value for a and b, then negate a, then apply the
“&&” operator. Short-circuit logic is not used because DataRoller is particular about data-types and will
not allow operators to operate with data types that are not valid. For example, “true || 5” is invalid,
even though the left-hand side is a valid Boolean value and a short-circuit evaluation would have led to a
final value of true.

For user-supplied functions, this lack of short-circuit evaluation may have side-effects when the right-
hand side of a comparison is evaluated unnecessarily.

DataRoller is picky about data types applied to each operator. DataRoller does not perform type casting
to any value to allow an operator to work correctly and will not implicitly convert any type to any other
type. Using invalid values for an operator are flagged at run-time.

All operators have specific rules for handling null values. In general, DataRoller will operate over nulls
when the operation has an obvious interpretation, such as “5 + null” (evaluates to 5) and will flag
anything else as an error, such as “now - null”. See below for a table listing all null and other border
cases.

4.6.2 Boolean Operators

Logical &&, || and ! (“not”) operate strictly on Boolean values and act exactly as you would expect them
to when all portions are not null. All three operators do not permit nulls.

Examples:

Expression Evaluates To Comments

true && true
true && false
false && false

true || true
true || false
false || false

! true
! false

true
false
false

true
true
false

false
true

Exactly what you expect.

null && true
true || null
! null

Invalid operations Null values are not allowed in any
portion of a logical operator.

60

4.6.3 Equality Operators

The DataRoller Equality Operators:

• == Equals
• != Not equals
• === String Equals
• !== String not equals

The equality operators “==” and “!=” operate over all data-types, including strings, Booleans and nulls.
Unlike databases which consider “null = null” to be false, in DataRoller “null == null” is true so
we don’t need a separate “is” operator to handle null cases.

Operator “===” is true only when both sides are strings and the contents are equal without regard for null,
character case, leading or trailing whitespace.

Be careful when deciding between “==” and “===” and deciding between “!=” and “!==” (note the “=”
count in each operator). The non-string operators “==” and “!=” are sensitive to string case and
whitespace and consider null to not be the same as an empty string. The string operators “===” and “!==”
might be a better choice for string comparison.

For floating point numbers, “==” and “!=” don’t generally get along that well. Like in many
programming languages, round-off and approximations often will result in two numbers not being
precisely equal. It is not uncommon for a number such as 123.456 being represented as
123.45555555999999973645 internally, and so they are not considered equal according to the “==”
operator.

A better alternative to using “==” and “!=” operators directly, is to use the built-in function fequals().
Function fequals() will return true when the two arguments passed in are within an epsilon of each
other. Given “fequals(a, b, c)” will compute the distance between a and b and return true when this
difference is less than c. It just returns “absolutevalue(a-b) < c”.

61

Expression Evaluates To Comments

null == null
null == 12
now == null

true
false
false

Null is equal to itself and nothing
else.

123 == 123
123 == 123.00

true
error

Integer comparisons are obvious.

Cannot compare an integer 123 with
a decimal 123.00 values.

“ AB7t ” == “ab7T”
“ AB7t ” === “ab7T”

“Firefly” == “RICHMOND”
“ Firefly” === “FIREFLY”

“” == null
“” === null

false
true

false
true

false
true

“==” can be used with strings, but
they must be precisely equal,
including case and whitespace.

“==” is a good choice for strings for
values that are codes, labels,
passwords and other precise values.

“===” is good for things like
product codes.

now == today false

(other than at
precisely midnight)

Date comparison includes all
portions of the date and time down
to the second.

4.6.4 Comparison Operators

The order comparison operators “<”, “<=”, “>” and “>=” will operate over any data type including nulls,
dates and Booleans. Null values are generally considered to be “below” non-null values, such as “null <
-900”, “null < false” and “null < today” (for any value of today). “false” is less-than “true” for
Booleans.

Like operators “==” and “!=”, floating point values may be compared but may fall prey to the same
round-off and approximation errors. Negative infinity is less than every other floating-point number and
positive infinity is greater than every other floating-point number other than the strange “not a number”
(NaN) value. NaN is greater than every other floating-point number, including infinity.

62

Examples:

Expression Evaluates To Comments

1 < 86
1.56 < 1.57
123.45 <= 123.45

true
true
true

Simple numeric comparison

D’today’ < D’today’
D’today’ < D’now’
D’now’ < D’now’
D’now’ >= D’now’

false
true
false
???

Today means midnight today, now means
this very second.

Since “now” is computed to the second, be
careful with any expression with more than
one “now” in it! The first occurrence may
not be precisely the same as the last!

false < true true Although not generally considered to have
an intrinsic ordering, false is less-than
true.

“hi” < “hi there”
“123” < “56”
“DEF” < “abc”

true
true
true

Case-sensitive and whitespace-sensitive
comparisons.

4.6.5 Algebraic Operators

DataRoller supports the typical operators for performing arithmetic, including:

• “+” for addition
• “–” for subtraction
• “*” for multiplication
• “/” for division
• “%” for modulus

Addition, subtraction, multiplication and division are supported for all numeric types with exactly what
you would expect. Modulus is supported for integers and floating point numbers, but not decimals.

In addition to the above, there are special cases for dates and strings, and additional operations for
different combinations of types:

63

Expression Meaning Example

123 / 10
123.4 / 10.0
1.2e2 / 1e2

12
12.34
1.2e1

Division for integers throws out the decimal or
remainder portion.

Division for decimal numbers is precise and
maintains all decimal digits.

Division for floating point numbers maintains
decimal values, but is inherently an approximation.

1.0 / 3.0 Error Decimal division that results in an infinitely-
repeating value is not permitted: the Decimal data
type is not an approximation. It must maintain a
fixed number of decimal places, all of which are
significant.

123 % 10
12.34 % 10.0
12.34 % -10.0

3
2.34
2.34

Integer MOD is just the remainder after division.

Same for floating point numbers, but the remainder
itself can have a decimal portion.

On the left, note that the remainder after dividing
by -10 is a positive number.

12 / 0
12.34 / 0.0

0 / 0
0.0 / 0.0

Error Like any other system, you cannot divide by zero.

4.6.6 String Operators

Strings are a fundamental type in wide use in databases, and so DataRoller defines several operators to
make working with strings more readable than relying on separate functions to perform manipulation. In
DataRoller, the following operators have special meaning for strings:

Expression Meaning Example

string == string
string != string

Precise, exact equality or
inequality

“ABC” == “Abc” is false
“ABC” == “ABC ” is also false
(note the trailing space character)

64

Expression Meaning Example

string === string
string !== string

Equality/inequality,
ignoring boundary
whitespace and letter case

“ ABC” === “abc ” is true
“a b c” === “ a b c” is fals
e

(note internal whitespace differences)

string + string Concatenation, preserving
boundary whitespace

“ 12 3 ” + “ abc
”

evaluates to
“ 12 3 abc ”

string & string Concatenation after
trimming all boundary
whitespace from both sides
and adding a single space
between operands.

“ 12 3 ” & “ abc
”

evaluates to
“12 3 abc”

string - string Remove the RHS string
from the LHS string, if
present

“cookies” – “cook” is “ies”
“cookies” – “cake” is “cookies”
"aXbXcXdX" - "X" is "abcd"
" h t " - " " is "ht"

string * integer Repeat the string n times
(n is RHS value)

"ab" * 0 is ""
"ab" * 1 is "ab"
"ab" * 4 is "abababab"
"ab" * -2 is ""

string < string
string <= string
string > string
string >= string

All order comparison
operators are simple
lexographic ordering. I.e.,
“A” before “B”, etc.
according to UTF-16.

“foo” > “bar” is tru
e

“” < “1” is tru
e

“ABC” < “abc” is tru
e

“Garcon” != “Garçon is true
“Niña” > “Nina” is true

4.6.7 Dates

Only a few operators are supported for Dates, since most combinations of two dates with an operator are
not generally self-evident. For example, subtracting January 6th from July 10th has no widespread,
understood meaning. In general, rely on functions to operate over date values.

65

Supported Operators for Dates:

Expression Meaning Example

date == date
date != date

Precisely the same moment in time
down to the second (if present).

If an operand has no time
component, midnight is assumed.

Be careful comparing a database
value that has no time component to
another database value that has a
time component.

D'today' == D'today' is
true

(both assume midnight)

D'today' == D'now' is
false

(other than at precisely
midnight when the time
component of “now” is also
midnight)

date + date
date - date
date & date
date * date
date / date
date % date

Error January 6th can’t be added to
June 10th.

date + integer
date - integer

Add or subtract days to a date D'today' + 1 means
tomorrow
D'today' - 1 means
yesterday

date < date
date <= date
date > date
date >= date

All order comparison operators are
simple comparisons based on date or
date time. “Less-than” (<) means
the LHS occurs in time before the
RHS.

D'today' < D'today' is
false

D'now' >= d'today' is true

66

4.6.8 Operator Summary Table

Null String Integer Decimal Float Date Boolean

&&
|| ! Error Normal logic

==
!=

Nothing is ==
to null except
null

Exact equality
including
whitespace

Equality
Same date
down to
the second

Normal logic

===
!==

null ===

null is true

Case-
insensitive,
whitespace-
insensitive
string equality

Error

< <=
> >=

null is less-
than
everything

Lexographic
comparison Typical order comparison false < true

4.7 Conditionals

4.7.1 If then else

The “if” statement is patterned after typical programming languages with an expression enclosed in
parenthesis that evaluates to a Boolean value, a “then” portion and an optional “else” portion. All “if”
statements must be terminated with a trailing “end” keyword.

Keyword “then” may optionally appear after the Boolean expression, but has no intrinsic meaning.

The “else” keyword and following expression is optional. When omitted, it has a default value of null.

In DataRoller the “if” clause acts as an expression itself which can be combined with other expressions
and operators to assemble new values. Because an “if” statement can be combined with other
expressions, every “if” must have a matching “end”. Without such a terminator, it would be unclear
when an “if” portion ended and subsequent operators and expressions began:

Consider the following incorrect DataRoller expression:

if (a == null) 5 else 6 + 8 // incorrect! Missing trailing “end”

67

It is unclear which of the following expressions the above was meant to be:

(if (a == null) 5 else 6) + 8 // evaluates to 13 or 14
if (a == null) 5 else (6 + 8) // evaluates to 5 or 14

The “end” is a syntactic marker that makes it clear where the “if” statement stops and any additional
operators begin. The two expressions above can be written correctly as:

if (a == null) 5 else 6 end + 8 // evaluates to 13 or 14
if (a == null) 5 else 6 + 8 end // evaluates to 5 or 14

A note on side-effects: the conditional always evaluated, the “then” or “else” that isn’t applicable is not
executed: this is important for user-supplied functions that might have side-effects or run-time
considerations.

4.7.2 Case When

The “case” statement is patterned after the SQL “case” expression and follows the same general syntax
and meaning. The “case” statement begins with keyword “case” and ends with keyword “end”. It must
have one or more “when” clauses and an optional “else” clause at the end before the “end” keyword.
“When” clauses start with keyword “when”, have a Boolean expression, keyword “then” and a closing
value expression. There is no keyword to end a “when” clause. Like “if” statements, the “else” clause
begins with keyword “else” followed by a value expression.

A note on side-effects: execution starts with the first “when” clause, which is always evaluated. If true,
the “then” is evaluated. If the first “when” is false, the “then” is not evaluated. Execution starts with the
first “when then” clause and continues executing only until it finds a “when” clause that evaluates to
true. No further when clauses or then expressions are evaluated. If no when clauses evaluate true and
there is an else clause, it is evaluated. If no when clauses are true and there is no else clause, the entire
case statement evaluates to null.

This specific sequence of evaluation is important for user-supplied functions that might have side-effects
or run-time considerations. In short, a case expression uses short-circuit evaluation.

For example:

table projects
 insert 80 rows
{
 $val = 42,
 col case
 when $val > 89 then “R” // not true, try next “when”
 when $val == 42 then “S” // true, so use value “S”
 when $val > 6 then “T” // Not evaluated (even though it happens
 // to be true).
 else “V” // Not evaluated: a “when” clause was true
 end
}

68

4.7.3 Conditionals Example

Conditionals in action:

table hospital_users ...
{
 username column(people.name unique),
 role choice(“admin”, “doctor”, “nurse”, “orderly”),

 // Only doctors and nurses have licenses
 lic_num if (role == “doctor” || role == “nurse”) then
 pattern(“UU-NNNNN-U”)
 end, // no else means null
 lic_exp if (lic_num != null) then
 random(D’1985-1-1’ .. D’today’)
 end,

 emp_num // Employee nums: 1st char is role abbrev, suffix is 1st 2 chars of lic
 substring(role, 0, 1) +
 “-” +
 format(sequence(), “00000”) + “-” +
 case
 when role == “admin” then “00”
 when lic_num != null then substring(lic_num, 0, 2)
 else “X7”
 end
}

4.8 Raw()

Syntactically, raw() appears with other column definitions in a table section of a DataRoller project file,
but it is handled differently: The string passed to raw() is used once, directly to build the SQL INSERT
statement. All other Generators generate values that are bound to “?” placeholders in the SQL INSERT
statement.

For example:

Whatever is passed to raw() appears directly in the SQL INSERT statement. In the example above:

• An Oracle sequence is used to generate unique values for id

69

• DEFAULT is a keyword in T-SQL that asks the database to use the default value defined for the
column

• Database function rgb2cmyk() is called to convert the value in column rgb. Note that DataRoller
does not allow “bind” in raw() like it does in sql(): raw() is used once to create the insert
statement, so no generated values are available to it. Note that you can refer to columns in the
current row, though!

• Constants can be passed to raw(), such as ‘pantone’ above. The single quotes are necessary for
a string literal inside the SQL SELECT statement.

o raw(“pantone”) won’t work because the double-quotes are DataRoller syntax elements.
The word pantone would be taken as a column name by the database most likely.

o raw(“\”pantone\””) won’t work either because some databases take double-quotes to
mean column names, and pantone isn’t a column.

No other generators or expressions can be combined with raw(). Raw() must be used solely by itself.
For example, “raw(“func(a, b)”) * 56” is not a valid column expression because raw() is being
combined with other elements.

70

5 Functions
Functions are transforms that operate over other generators, constants or other functions themselves. A
function is a label with all arguments (potentially none) enclosed in parenthesis. Each argument is a
constant or any Generator Expression. A function works the same way in DataRoller as most
programming languages.

Example using function “upper()” that takes a single string and returns all letters in upper-case:

upper(trim(code) + “-ab-” + initials(xpath(“names.xml”, “/names/full”))

Components of the above example:

Expression Comment

code Generator that looks up the value in another
column for the current row.

trim(code) Call function trim(), that removes leading and
trailing whitespace to the column value above.

+ “-an-” + Concatenate “-an-” with the results of trim()
and initials().

xpath(“names.xml”,“/names/ful
l”)

Generator that reads XML file names.xml and
retrieves all text matching “/names/full”.

initials(xpath(“names.xml”,
 “/names/full”
))

Function that takes an input string and returns the
first letter of each word based on the usual word
boundary characters. This takes the full name
from xpath(), and retrieves only the initial letter of
each word.

71

Some typical uses:

Example Comments

first_name filerow(“firsts.txt”),
middle_init pattern(“U”),
last_name filerow(“lasts.txt”),
initials initials(
 first_name &
 middle_init &
 last_name)

Populate a column of a person’s initials by
pulling the values from the constituent name
columns and calling initials().

description lorem(90..1000),
title substring(description,
 1,
 80)

Populate a large description column with a
big generated string, and make the
corresponding title column be just the first 80
characters to accommodate “title
varchar(80)” setup.

release_year random(1994..2010),
year_seq sequence(),
label “NNP-” +
 format(release_year, “000
0”)
 + “-” +
 format(year_seq, “00”)

Create “NNP-1999-01” and so on by
combining the individual parts. If year_seq
is 5, use format to convert it into a string with
leading zeros. This converts 5 into “05”.

table circ
 insert 16 rows
{
 t sequence(0.0e0 step 3.927e-1),
 x cos(t),
 y sin(t)
}

Generate the Unit Circle.

Parameter t moves from 0 through 2π.

16 points over 2π radians, so step t = 2π/16.

5.1 String Functions
upper(string): string

Convert all lower-case letters to upper-case letters, leaving everything else as-is in the
input string.

lower(string): string

Same as upper, but convert all to lower-case.

trim(string): string

Remove all white space characters at the beginning and end of the input strings, leaving all
other white space alone.

length(string): integer

Return the number of characters in the input string.

72

replace(string, string, string): string

Given the input string in the first argument, replace() searches for all occurrences of the
second string. For all such matches, replace() substitutes the third string in the input string
and returns the result of all such substitutions. The search string is a regular expression.

I.e., replace(“hooyaa”, “[ao]”, “ar”) returns “hararyarar” (I like pirates).

substring(string, long, long): string

Return the substring of the first argument, starting at the position of the second argument
and ending at the third argument. The first character in the input string is position 0, so

substring(“smiles”, 1, 4) returns “mile”.

This is permissive with the two string indexes. If the start is after the end of the string, this
returns “”. If end index is past the end of the string, the returned string just stops with the
last character of the input string. If the start index is negative, it just assumes you meant 0.

abbreviate(string, long): string

Reduce the string passed in so its length is the second argument, or less if it is already
smaller than the second argument.
 abbreviate() adds “...” to the end of a string if it reduces its size.
 abbreviate(“hithere”, 10) returns “hithere”
 abbreviate(“abcdefg”, 6) returns “abc...”
If the second argument is <= 0, this returns null.

There is a strange boundary condition when the second argument is 0 through 3. The
abbreviation set of three periods cannot fit into a string of length 0 through 2, and
abbreviating a string to exactly length 3 would just be “...”—a nonsense value. So, if the
second argument is 0 through 3 no abbreviation symbol is used and the input string is
truncated instead..

capitalize(string): string

Make the first letter a capital. capitalize(“hi”) returns “Hi”. capitalize(“hEY”)
returns “HEY”

countMatches(string, string): integer

Return the number of times the second argument was found in the first argument. The
second argument is a plain string, not a regular expression.

defaultIfEmpty(string, string): string

Return the first string if it is not “”, and the second string if it is.

deleteWhitespace(string): string

Return the input string after removing every white space character.
deleteWhitespace(“ a b c ”) returns “abc”

initials(string): string

Return a string by concatenating the first letter of each word in the input string.

73

soundex(string): string

Compute a single string that represents the general phonetic sequence of the input string.
See “soundex” in various database guides.

Some important points:

Unpronounceable strings have a soundex defined, but they are not terribly useful, such as
soundex(“kxtgp”) = “K321”.

Non-word strings return “” such as “123”.

soundex() operates over the whole string, not just the first word.

nthtoken(string, string, long): string

Break the first string into multiple tokens by splitting it via the regular expression in the
second string. Once split, return the token at the index passed in the third argument (0 is
first index).

nthtoken(“a:b:c”, “:”, -1) is “”
nthtoken(“a:b:c”, “:”, 0) is “a”
nthtoken(“a:b:c”, “:”, 1) is “b”
nthtoken(“a:b:c”, “:”, 2) is “c”
nthtoken(“a:b:c”, “:”, 3) is “”

If either string is null or empty, a null value is returned. If the third parameter is negative
or larger than the number of tokens, an empty string is returned.

5.1.1 Function pattern()

Function pattern() takes a string describing how it should generate values, where certain letters indicate
what the Generate should create. Upper case letters matching the template letters below are substituted.
Every other character is output as-is. To escape a template letter, precede it with a backslash (“\”). To
output a backslash, escape it with another backslash (“\\”).

Alternately, use single-quotes to enclose a series of characters that should be output without consideration
for replacement. Leaving the input string without a matching closing single-quote isn't a concern. To
output a single quote, escape it with a backslash.

74

Character Meaning Valid Values

U Uppercase letter A – Z

L Lowercase letter a – z

A Alpha letter A – Z and a – z

N Number (digit) 0 – 9

B Letter or number (“both”) A – Z, a – z, 0 – 9

X Hex digit 0 – 9, A – F

Note that nothing here handles NLS characters like “ñ”, or “ç”. This Generator is not designed to be used
to generate words from a particular language. It is designed for generating codes and labels, which
typically are restricted to basic letters, numbers and symbols in ASCII-7 only and tend to be fixed lengths.

Using pattern(“UU-NNN”) would generate “AB-304”, “ZU-011”, “GL-956” or “SS-270”.

To generate strings of variable length, use the “*” operator to repeat a string a certain number of times,
such as

pattern(“B” * random(5..9))

which would generate between 5 and 9 characters, each a letter or digit.

5.1.2 Function guid()

Function guid() returns a value that will never be returned from any other call to guid() in the future on
any other machine.

Typically, database tables have identifiers that are not unique beyond each specific table (like
“uniqueidentifier” for SQL Server primary keys, or a separate sequence object for each table in
Oracle. For cases where uniqueness needs to be global, across all table rows everywhere, a simple “1-up”
integer will not suffice. GUIDs (a.k.a. UUIDs or uniqueidentifiers) are typically used.

The data-type actually generated by DataRoller is a string since each database supporting this concept has
a vendor-specific type. For example, the Microsoft SQL Server JDBC driver handles uniqueidentifier as a
CHAR and the JTDS SQL Server JDBC driver handles uniqueidentifier as a JTDS-specific internal type
(net.sourceforge.jtds.jdbc.UniqueIdentifier) objects.

75

5.2 Numeric Functions

5.2.1 Integral Functions

max(integer, integer): integer

Return the larger of the two arguments.

min(integer, integer): integer

Return the smaller of the two arguments.

5.2.2 Floating-point Functions

sin(float): float, cos(float): float, tan(float): float

Standard sine, co-sine and tangent trigonometric functions. Arguments are in radians,
returning float values.

asin(float): float, acos(float): float, atan(float): float

Arc-sine, etc. Accept float number and return result in radians.

sinh(float): float, cosh(float): float, tanh(float): float

Hyperbolic trig functions. If you don't know what these are, one sentence here isn't going
to help.

exp(float): float

Returns e raised to the argument passed in where e is somewhere near 2.71828.

pow(float, float): float

Returns the first argument raised to the second power. pow(x,y) is xy.

log(float): float

Returns the natural log (log base e) of the argument.

log10(float): float

Returns the base-10 log of the argument.

sqrt(float): float

Returns the square root of the argument.

cbrt(float): float

Returns the cube-root of the argument

ceil(float): float

Returns the next whole number larger than the argument, or the argument if it has no
fraction.

76

floor(float): float

Returns the greatest whole number smaller than the argument, or the argument if it has no
fraction.

max(float, float): float

Returns the large of the two arguments.

min(float, float): float

Returns the smallerof the two arguments.

abs(float): float

Return the absolute value of the argument (sign removed).

signum(float): float

Returns -1 if value is < 0, 0 if value is == 0 and +1 if value is > 0.

round(float): integer

Unlike ceil() and floor() above, round() will return an integer value (good for converting
floating point numbers to integers!).

toRadians(float): float

Returns the degrees argument convertd to radians.

toDegrees(float): float

Returns the radians argument converted to degreesConvert from radians to degrees and
desgrees t

5.3 Date and Timestamp Functions
isSameDay(date, date): Boolean

Returns true only if both arguments are not null and have the same year, month and day
portions. Use the “==” operator to check if two dates have the same year, month, day,
hour, minute and second.

addYears(date, integer): date

Return the date passed in after moving it forward a number of years (or backward in time if
the second argument is negative). Moving a date by years has no effect on the day, month,
hour, minute or second components. Adding a year is not the same thing as adding 365
days: it will add 366 across leap years.

addMonths(date, integer): date

See addYears() above: this returns the input date moved the number of months in the
second argument without modifying the day, hour, minute or second components (the year
may change).

addWeeks(date, integer): date

See addYears() above: this returns the input date moved the number of weeks in the
second argument. addWeeks(x, y) is the same thing as addDays(x, y * 7).

77

addDays(date, integer): date

See addYears() above: this returns the input date moved the number of days in the second
argument without modifying the hour, minute or second components (year or month may
change).

Note that addDays(d, 6) is the same as using the “+” operator: d + 6.

addHours(date, integer): date

See addYears() above: this returns the input date moved the number of hours in the
second argument without modifying the minute or second components (day, month and
year may change).

addMinutes(date, integer): date

See addYears() above: this returns the input date moved the nmber of minutes in the
second argument without modifying the second component (the other date parts may
change).

addSeconds(date, integer): date

See addYears() above: this returns the input date moved the number of seconds in the
second argument.

truncateDate(date, string): date

Return the input date after setting a portion of date or time fields to zero. Valid values for
the second parameter are year, month, day, hour, or minute. Truncating to minute means
setting the minute and second portions of the input date to zero. Truncating to hour means
setting the hour, minute and second postions of the input date to zero (and so on). A null or
empty string as the second argument is the same as “day”.

roundDate(date, string): date

Round the time portion of the date passed in. Put another way, return midnight of the date
passed in if is is before noon, and midnight of the next day if the time is at noon or later.

5.4 System Functions
systemProperty(string): string

Return the result of calling System.getProperty(). Used mainly when passing
arguments via “-D” to the command-line.

getenv(string): string

Return the environment variable (OS-dependent) with the name passed in, or null if not
found (or the argument itself is null).

78

5.5 Cryptographic Functions
encodeBase64(string): string

Take the input string and compute an ASCII-7 “base-64” representation of it, returned as a
string.

decodeBase64(string): string

Return a string from encodeBase64() above into the original string.

md5(string): byte[]

Return the MD5 digest as an array of bytes.

md5Hex(string): string
Call md5() and hex-encode the result, returned as a string.

sha256(string): byte[]

Similar to md5() above, compute the SHA digest of the input string and return it as a byte
array.

sha256Hex(string): string

Call sha256() and Hex-encode the result, returned as a string.

5.6 Data-Type Conversion Functions

format(any, string): string
Take a raw number or date and convert it to a string via a spec passed in the second
argument. I.e., take 1234567 (integer) and make it “1,234,567.00”. See below for details
on how to construct a format string.

If 1st argument is null, format() returns null.

If the 2nd argument is null and the 1st is a date, format() returns the date formatted as an
ISO date time (“yyyy-MM-dd’T’HH:mm:ss”).

If both arguments are null, this returns “”.

date2long(date): Long

Convert a date data into an integer value (Java type “long”) per Java’s
java.util.Date.getTime() function. The value returned is the number of milliseconds
since 1/1/1970 at midnight, UTC.

long2date(long): date

Convert an integer value into a Date data-type. The argument is the number of
milliseconds since 1/1/1970 at midnight, UTC. Calling long2date(null) returns null.

string2long(string): Long

Convert the string passed in into a long. If the input string is empty or null, return 0.

79

string2double(string): Double

Convert the string passed in into a floating-point number (“double” in Java parlance). If
the input string is empty or null, return 0.

string2decimal(string): argh

Convert the string passed in into a long. If the input string is empty or null, return 0.

long2string(long): string

Returns the argument as a base-10 string with optional leading hyphen if negative.

double2string(double): string

Returns the argument as a string with one or more digits, a period (“.”) and one or more
digits. A leading hyphen is included if the argument is negative.

decimal2string(decimal): string

Returns the argument as a string using the same format as double2string() above.

decimal2float(decimal): double, float2decimal(double): decimal

Convert between floating-point numbers and (fixed-point) decimal numbers. Passing null
to either function returns null.

Floating point numbers can be larger than the available precision for decimals or smaller
than the available decimal precision. In these cases, +∞ or -∞ will be returned.

string2date(string): Date

Convert an input string in ISO8601 date-time or date format.
Date-only format: yyyy-MM-dd
Date-time format: yyyy-MM-dd'T'HH:mm:ss
The ‘T’ in the middle is a literal “T” character.
Year must be exactly 4 digits long.
Month, day, hour, minute and seconds can be a single or two-digit number only.
Hours are in 24-hour military time.
“2011-02-03T14:23:09” is February 3rd 2011 at hour 14 (2 PM), with 23 minutes and 9
seconds past the hour.
Passing a null or empty string will return null.
To convert strings in different date formats, use parseDate() instead.

date2string(date): string

The opposite of string2date() above, this formats a date passed in in ISO8601 format.
Passing a null date will return an empty string.
To format a date with a different format pattern, use function format() instead.

80

parseDate(string, string): Date

Like string2date() above, parseDate() parses an input string and returns a Date object
according to a format. Function string2date() uses ISO8601 and parseDate() accepts
a custom format string as its second argument. The format argument is passed to Java’s
SimpleDateFormat object. In summary:

Format Meaning

yyyy 4-digit year

yy 2-digit year

MM Month number

MMM Month as three letter abbrev.

w Week number in year

W Week number in month

DDD 3-digit day in year

dd 2digit day of month

F Day of week in month

EEE Weekday as three letter abbrev.

a AM/PM

HH Hour in 00-23 notation

hh Hour in 1-12 notation (use with “a” above
for AM/PM)

mm Minute in hour

ss Second in minute

SSS 3-digit milliseconds in second

int2long(Integer): Long

DataRoller uses a Java “long” internally for nearly all computations and internal
representations. However, in some cases, DataRoller reads data directly from a database to
perform work. Use int2long() to convert a Java int into the more expressive long data-
type.

There is no simple long2int() function provided by DataRoller, since this “narrowing”
conversion may lose precision.

81

6 Execution
DataRoller is shipped with a basic Windows batch file “dataroller.bat” and a Unix shell script
“dataroller”.

C:\dataroller> dataroller fireworks.txt
DataRoller 1.0

This program comes with ABSOLUTELY NO WARRANTY, is free software, and you
are welcome to redistribute it under certain conditions. See License.txt
for details. Copyright 2012 Rich Alberth.

suppliers [....................] (8s)
materials [....................] (14s)
fireworks [....................] (30s)
firework_details [....................] (27s)
Done (1m 19s)

In its simplest form, just pass the name of the DataRoller Project file to read in and execute. DataRoller
will connect to the default database (more on that below), parse and load the Project file, load ancillary
things like defined Lookup Tables and insert data into the database.

There is no special file type or extension for DataRoller files, and the command-line client does not care
what you use.

DataRoller is written in Java, and a suitable Java virtual machine is not included with the distribution.
DataRoller will use whatever “java” resolves to, based on your operating system. For example, it will
search %PATH% on Windows and any alias or $PATH on Unix. DataRoller will execute with any version of
Java at 1.6 or newer. DataRoller has not been tested on Java 1.5 or any previous version.

6.1 Command-line Switches

If you ever forget, just type “dataroller –h”. The system will give you a dump of what you need to do.

Simple Long name Argument Description

-h --help Print help message and do nothing else.

-d --driver Java class name Fully-qualified name of a class already present in the
classpath to load via “Class.forName()”. This is
useful for loading database drivers not supported by
DataRoller.

82

Simple Long name Argument Description

-c --url JDBC
connection
string

Full JDBC connection string (different for each
database vendor) holding all information necessary to
reach the (possibly remote) database.

-u --username Username Username to send to the database, if needed.

-p --password Password Password for the user specified above, if needed.

-b --batch “true” or “false” When true, DataRoller holds onto 50 rows and sends
them to the database in one command to avoid being
to “chatty” on the network.

-D --property name=value Set a Java system property that can be used by a
loaded JDBC driver class, or referenced within the
DataRoller Project file itself.

-t --trace filename Produce a huge, detailed trace log file with all the
details about what DataRoller did and what it
generated. Be careful when using this when your
project file inserts a log of records: the trace file can
grow to hundreds of megabytes or larger. DataRoller
adds several trace rows for every column of every row
of every table it generates.

A fully-specified command-line argument for a remote DB2 database:

dataroller –d com.ibm.db2.jdbc.app.DB2Driver -c jdbc:db2://dbsrv/MYDB;convertNull=1
-u rich56 -p DyerMaker -b false -Ddbtype=PROD myfile.txt

Project files that start with a dash are problematic since DataRoller will try to parse them as a command-
line switch. To get around this, put “--” before the project filename. Every command line argument after
“--” is taken as a filename. “dataroller -- --trace foo” tries to open file “--trace” and “foo”
(causing and error since DataRoller will only process one project file at a time).

83

6.2 User Preferences and Aliases

There are a bunch of command-line switches that are difficult to remember and that you need to pass most
of the time. To alleviate this problem, you can store all your often-used command-line arguments in a
user preferences file and DataRoller will read this in automatically for you.

On Microsoft Windows platforms, the file is one of the following, depending on your OS:

• C:\Documents and Settings\username\DataRoller.prefs
• C:\Users\username\DataRoller.prefs

Use ~/.dataroller for Unix-based operating systems.

Contents of a user preferences file are “name=value” lines, blank lines or comment lines that start with a
hash (“#”) symbol. Valid user preferences are “driver”, “url”, “username” and “password”. When
included as-is, they provide defaults for their corresponding command-line arguments (long-form). When
included with an alias prefix, they are only in effect when mentioned with the “-a” command-line
argument. For example, “alias.prod.password=secret” is only in effect if “-a prod” is on the
command-line.

DataRoller always takes arguments on the command-line first. If an argument does not appear on the
command-line, it takes a user preference as specified in a “-a” argument. If no such preference exists, it
falls back to a default user preference.

Consider the following ~/.dataroller file:

Production server
alias.prod.url=jdbc:jtds:sybase://prodsrvr
alias.prod.password=boogieshoes

Test server
alias.test.url=jdbc:jtds:sybase://testsrvr
alias.test.password=brickhouse

default to laptop
url=jdbc:jtds:sybase://localhost
username=goofy
password=wordup

The command line:

$ dataroller –a prod -p secret myfile.txt

results in:

• The in-effect URL is “jdbc:jtds:sybase://prodsrvr” because it is not specified explicitly on the
command-line and is specified in alias prod

• The in-effect username is “goofy” because it is not on the command-line and not part of the active
prod alias, but is set as a default.

84

• The in-effect password is “secret” because it is set explicitly on the command-line. This
overrides anything found in the user preferences file (alias or default entry).

The command line:

$ dataroller myfile.txt

results in “jdbc:jtds:sybase://localhost”, “goofy” and “wordup” being used since there is no alias
(“-a”) and nothing is specified on the command line.

6.3 Loading JDBC Drivers

For DataRoller to connect to the database, it needs to know the driver class to load into memory (“--
driver” option above) and the connection string (“--url” above). If these two do not match, DataRoller
will not be able to load the database vendor’s Java code into memory and successfully connect to the
database.

DataRoller ships with several database vendors supported, and understands how to connect to many
others.

Database Beginning of URL Driver preloaded?

SQL Server jdbc:jtds:sqlserver: Yes

Sybase jdbc:jtds:sybase: Yes

HSQLDB jdbc:hsqldb: Yes

MySQL jdbc:mysql: Yes

PostgreSQL jdbc:postgresql: Yes

Derby jdbc:derby: Yes

Oracle jdbc:oracle: No

SQL Server jdbc:sqlserver: No

DB2 jdbc:db2: No

85

To use a database above with a preloaded driver, simply use a URL based on the prefix above. For
example, to connect to a MySQL database, use “jdbc:mysql:” as the start of the connection string, and
DataRoller will load the MySQL driver Java code for you. See the reference section at the end of this
document for details on JDBC URLs.

To use SQL Server or DB2, you will need to acquire the JDBC driver code from the vendor (we are not
allowed to package it as part of the DataRoller product), put it into the lib folder in your DataRoller
installation, and use it in your connection string directly. DataRoller knows to load the correct Java code
based on the URLs listed above.

To connect to a database not listed above:

1. Download and put the driver jar file in the DataRoller lib folder
2. Use --driver to name the correct JDBC driver class (see documentation from the JDBC driver

provider)
3. Use --url according to the driver documentation

6.3.1 SQL Server

There are two JDBC drivers for SQL Server in widespread use. Microsoft publishes their own, and there
is a project on SourceForge.org called “jTDS” that provides a driver. The jTDS driver is included as part
of DataRoller, and the Microsoft driver is not. To connect to SQL Server using the Microsoft driver,
download a copy from http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx and use the URL prefix
“jdbc:sqlserver:”.

6.3.2 Oracle

Oracle does not permit its JDBC driver to be embedded in other projects, so you will need to download
the driver separately and put it into the lib folder. Get the driver with your OTN account (free sign-up) at
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html

6.3.3 DB2

Similar to SQL Server and Oracle above, download the driver from the IBM web site at
http://www.ibm.com/developerworks/data/library/techarticle/dm-0512kokkat/ This page has a pointer to
information on the Universal Database on where to download the Java Developer Kit for DB2.

86

http://www.ibm.com/developerworks/data/library/techarticle/dm-0512kokkat/
http://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html
http://msdn.microsoft.com/en-us/sqlserver/aa937724.aspx

7 Speeding up DataRoller
Databases generally are happiest when multiple transactions each make relatively small changes to the
database. The database can maintain indexes, manage disk space, extend files as necessary and generally
tidy up as it goes. DataRoller makes dramatic changes to the contents of a database, usually with few to
no other concurrent users. Because of this, there are several things done by the database that can be
adjusted to make DataRoller faster.

• Use less-costly DataRoller Generators
• Do not maintain all indexes after every single insert statement
• Regenerate statistics for tables that changed drastically
• Lock tables to prevent contention and/or delay writing certain data until the end
• Disable costly constraints

7.1 DataRoller Generator Relative Costs

There is a large difference between Generators in both run-time cost and amount of memory consumed.
Generators that have the largest impact on speed and memory cost are discussed below. In general,
DataRoller takes the stance that memory is cheap and long run-time is annoying. DataRoller will use
memory to pre-compute, index or cache values in memory to make run-time faster.

In general, think small
For generating test data, there is rarely need to push the database to its limits by populating each column
to their maximum values. For example, “pattern(“U” * 4000)” is probably overkill to populate a
“product_code varchar(4000)”. Choose less data to populate if your goal is only to have some data
for a test or demo.

Also, “null n%” is your friend: it takes no time or memory to support, and speeds up inserts by sending
less data to the database. If you have a nulls-allowed column, slap on a “null 25%”.

Avoid large range with unique or unique per parent with random()
DataRoller pre-computes all possible values in the range, stores them in memory, and marks them used as
they are retrieved for use. This means the memory is proportional to all values in the stated range. There
is no speed degradation using unique or unique per parent with random(). Using unique per

87

parent with sequence()is of no concern. All sequences use a small, fixed amount of memory and have
the same run-time cost.

“random(1.0 .. 100.0 step 1.0 unique)” needs to store 100 values in memory.
“random(1.0 .. 100.0 step 0.1 unique)” needs to store 1,000 values in memory.
“random(1.0 .. 100.0 step 0.0001 unique)” needs to store 1,000,000 values in memory.

Use blob(), lorem() only with small upper bounds
The blob() and lorem() generators do not stream their values to the database. The entire value is
computed in memory and sent to the database for each row.

Similarly, large files for folder() are not streamed. Each file is read into memory in entirely and sent to
the database for each row.

Do not use excessively large look up files
folder(), filerow(), xpath() and column references to tables via “lookup table” all read their file
into memory in entirety. Using a very large file reference will take up a very large amount of memory.

For Excel files used in lookup tables, it is tempting to grab an entire large data-set (lots of rows and lots of
columns) into a single, large Excel file, and use it across many DataRoller files. Unless all columns are
used in each file, there is a waste. It takes much less room in memory to cache a file that contains only
the columns needed for a particular DataRoller file.

Any reference file with dramatically more rows than the number of DataRoller table rows it is used for is
a waste: look up data that isn’t used.

For xpath(), XML files with dramatically more structure (attributes, element trees) are similarly a waste.
For very large lookup XML files, DataRoller will run faster if the XML files are preprocessed with a
XSLT transform to filter out unneeded elements and attributes. Beyond reducing the number of disk
blocks to read and cache in memory, XPath queries run faster on simpler XML structures.

In general, it is better for quick execution to have a “home” folder with original versions of all look-up
data, and pared-down versions of these files in each separate folder with a DataRoller project: this way,
each project runs quickly.

Use sql() as a last resort
The sql() generator looks powerful because it can encode any database logic by way of select
statements. Unfortunately, because it has a user-supplied SQL select statement, DataRoller does not

88

cache any past-computed values, and will execute the SQL statement once for every row being inserted.
This is a “bail-out” generator that relies on the database to compute each value independently.

Try to use a combination of other DataRoller Generators and functions to accomplish the same thing or
simplify the logic being implemented.

As an alternative, consider “wrapping” the SQL statement within a User Supplied Function. A User-
Supplied Function has an opportunity to combine both SQL logic and Java logic, and can pre-compute or
cache values to speed up execution.

Alternately, compute all needed values in a SQL statement and store in a temporary table, and then
reference the temporary table via column() instead of using sql().

7.2 Rebuild Indexes

Databases maintain indexes by rebalancing B-Trees on disk and removing unneeded entries upon every
database insert, update and delete statement. Select statements execute dramatically faster at the
price of mildly slower insert, update and delete statements. In a general-purpose database with many
concurrent sessions, this is the best balance to keep the database efficient. When DataRoller runs against
a database that is not under heavy load, there is no need to constantly mange indexes.

Dropping an index is a fast operation. Rebuilding an index from scratch after populating data is generally
much faster than maintaining the index across every single insert statement. For B-Tree based indexes,
there is no rebalancing that needs to occur: the entire tree is built in one-shot.

Database Relevant SQL Statements

MySQL
For non-unique keys in MyISAM tables:

alter table _____ disable keys
alter table _____ enable keys

For other types, drop indexes and recreate them after DataRoller.

Oracle
For general indexes on a per-index basis:

alter index _____ unusable
alter index _____ rebuild parallel nologging

For function-based indexes:
alter index _____ disable
alter index _____ enable

Use nologging to avoid clogging up the redo logs since indexes do not
contain domain data.
Use parallel to rebuild indexes in parallel.

SQL Server
All indices on a particular table can be disabled and rebuilt together:

alter index all on _____ disable
alter index all on _____ rebuild

89

Database Relevant SQL Statements

DB2
PostgreSQL
Sybase

Drop and recreate each index after DataRoller is done.

7.3 Regenerate Statistics

Some databases maintain rough metrics of tables and indexes so they can build efficient query execution
plans. For example, it might be dramatically faster to loop over all records in a small table and look-up a
matching row in a large table to execute an inner join clause. Looping over the large table and looking up
matching entries in the smaller table might be an order or magnitude slower!

Unlike indexes, table and index statistics are generally not maintained automatically after every insert,
update or delete statement. They are updated via scheduled jobs. If DataRoller is used to make
dramatic changes to a database, the existing statistics might be a terrible match to reality. Use a
DataRoller SQL statement to regenerate the statistics.

Database Relevant SQL Statements

MySQL
For MyISAM, BDB, InnoDB, and NDB tables:

analyze local table _____
The local keyword speeds up generation by not writing to the
binary log. This is fine unless you need statistics replicated to other
instances.

Oracle
Generate statistics on all tables and all indexes in an entire schema
at a time (cascade means do the indexes too):

EXEC dbms_stats.gather_schema_stats(
 ’myschema’, cascade => TRUE)

Be careful to only use this in a SQL statement after the last table in
a DataRoller file since it applies to all tables and indexes in the
schema.

SQL Server
TO generate statistics for a table and all indexes:

update statistics ______ with fullscan

PostgreSQL
Analyze all aspects of a single table:

analyze _____
Analyze all tables in the current database:

analyze

90

As a general rule, read the documentation for your database to understand the implications of messing
with statistics. For SQL Server, for example, regenerating statistics invalidates all execution plans: they
will each need to be regenerated upon next use. SQL Server will regenerate statistics automatically when
it needs, so this may be unneeded.

Statistics serve another important purpose during DataRoller execution: Letting the database take
advantage of indexes that have been dramatically updated by DataRoller itself. When DataRoller loads a
large amount of data into a table that previously had only a small number of rows, the statistics will
typically show that the table has the previous small number of rows. Even if indexes are present and
rebuilt, they may not be used if the database considers a full table scan of a small table to be more
efficient.

Consider the following:

/* table products starts out with:
 * 100 rows
 * single index on columns product_id and active
 */
table products
 insert 100000 rows
{
 product_id sequence(),
 . . .
}

table items
 insert 10 rows
{
 . . .
 product_id products.product_id,
 active_prod_id sql(“select case active = 1 then product_id else null end
 from products
 where product_id = ?”
 bind product_id)
}

Even though DataRoller will issue “select product_id from products” once at the start of
populating table items, this will likely be implemented as a single full table scan (which fetches all
column data for every row) instead of a simple full index scan which is much faster. They both return the
same data to DataRoller, but the latter reads dramatically less disk blocks into the database memory to
fulfill the request.

Column active_prod_id is filled by executing the SQL query once for each of the 10 rows in table
items. If the database thinks table products only has a few rows, it will perform a full table scan for
each request. Once statistics are in place for table products, it will likely do an index unique scan and
avoid the table entirely since the index has both product_id and active values in it!

As a general rule, if you are dramatically changing a table that is used later in the same DataRoller file,
generating statistics might be a good idea.

91

7.4 Lock Tables

Check the documentation for your database for hints on lock management. This is database-specific, and
not necessarily a good idea if there are any other connections possible when DataRoller is executing.

By way of example, inserts for non-transactional tables in MySQL are faster with:

LOCK TABLES _____ WRITE
...
UNLOCK TABLES

The index buffer is flushed to disk only once at the “unlock tables”.

Insert performance for transactional tables in MySQL can be improved simply by using explicit
transactions:

START TRANSACTION
…
COMMIT

7.5 Disable Costly Constraints

Data integrity controls that are enforced by a database are a great safety net for applications to verify that
all data remains consistent. They come with a run-time maintenance cost, of course. Disabling integrity
constraints before loading data into a table and then re-enabling them after data loading is complete may
not be a savings, however. Unlike index maintenance, incurring the cost of constraint maintenance for
every insert statement may not be more than the cost for all rows at one time after all inserts are complete.

Typical integrity constraints:

• Unique: row inserts or updates look-up values in the current table (usually with index help)
• Referential Integrity: row inserts or updates look-up values in another table (hopefully designed

with an index!)
• Check: Database-resident functions or general expressions limit acceptable values

With integrity constraints enabled, every row will evaluate each constraint and fail the insert if it does not
succeed. If integrity constraints are disabled, then data is loaded, and then the constraints are enabled, the
database likely will simply evaluate each constraint for every record in the table. If DataRoller deleted all
rows before inserting new rows, both approaches likely will execute with the exact same amount of time.
If DataRoller did not delete all rows before inserting new rows, you may be in real trouble: Enabling a
disabled constraint will evaluate every row in the table, not just the new rows DataRoller inserted!

So, be careful about disabling any integrity constraints without thinking them through completely.

92

8 Extending DataRoller

8.1 User-Supplied Functions

If the myriad of wonderful generators and functions above would not be enough for every conceivable
need, you can write your own functions and reference them inside a DataRoller project file.

In a nutshell:

1. Write a public static Java function and compile it.
2. Define where the class file can be found in the DataRoller project file.
3. Use your function like any other built-in function above.

Straight to a simple example: File “MyClass.java”:

public class MyClass {

 public static String triple(String s) {
 return s + "," + s + "," + s;
 }
}

File func.txt:

function tripleString = "mystuff.jar!MyFunction.triple(string)"

table channel
 insert 25 rows
{
 number sequence(154),
 code pattern(“UUU”),
 label tripleString(number + “-” + code)
}

If number is 154 and code is “ABT”, label would invoke MyClass.triple() with argument “154-ABT”,
which would return “154-ABT,154-ABT,154-ABT”.

93

8.2 Java Function

A function to be invoked by DataRoller must be:

• In a public class
• Be “public static”
• Be named using a combination of only letters, numbers, “_” and “$”
• Declare formal arguments that DataRoller can supply (see below)
• Not use the “…” formal parameter declaration
• Return a value usable by DataRoller (see below)

DataRoller will load the class and invoke the method using Java reflection. Any exceptions thrown while
loading the jar file, loading the Class definition, or invoking the method will result in an error being
generated by DataRoller, and the execution of DataRoller will stop.

8.3 Arguments and Return Types

Methods may, in fact, declare any Java type in their formal parameter list, and return any Java type they
choose, even types unknown to DataRoller or JDBC. If the method being invoked is itself not being used
as an argument to another generator or function, then the value returned from the method is used directly
in inserting data into the database.

This unrestricted use of types is by design: one function may return an object that cannot be inserted into
a database (the underlying JDBC driver cannot handle it). But, this value may be passed as a parameter to
a different user-supplied method that does return a type JDBC can handle.

Eventually, the last function to be invoked that returns a value that DataRoller sends to the database must
be one of the following types:

• java.lang.String

• java.util.Date (and java.sql.Date, which is a subclass of java.util.Date)
• java.math.BigDecimal

• int or java.lang.Integer
• long or java.lang.Long
• double or java.lang.Double
• byte[]

94

8.4 Function Alias

Each user-supplied function to be invoked by DataRoller must be declared at the top of the Project file.
The function declaration includes an alias you use in the Project file, and the location where the method
can be found (jar file and class it lives in).

Sample:

function tripleStr = "mystuff.jar!MyFunction.triple(java.lang.String)"

“tripleStr” is the alias that can be used inside DataRoller Project files. Because the name of a Function
is just a label, any functions that might conflict with DataRoller keywords (supplied or user-created) can
be enclosed in square brackets to distinguish them. This is the same behavior for table names and column
names above. No built-in functions have the same name as a DataRoller keyword.

For example:

function myfunc = “a.jar!MyCls.myFunc(java.lang.String) // No prob, not a keyword
function xpath = “a.jar!MyCls.xpath(java.lang.String) // nope, xpath is a keyword
function [xpath] = “a.jar!MyCls.xpath(java.lang.String) // brackets make it a label
function myxpath = “a.jar!MyCls.xpath(java.lang.String) // or pick a different name

If you feel the need, the same function signature after the “=” can be listed more than once in a DataRoller
Project file as long as they have different aliases. In fact, every function declared in a DataRoller Project
file must be unique. This extends to built-in functions too, so for example you cannot declare a function
with alias “pow” since there is already a built-in function named “pow”.

8.5 Function Signature

Everything after the equals (“=”) is the location where DataRoller will look for the file.

The location is split by a “!”: everything on the left-hand side is a Java archive file to load. Everything
on the right-hand side is the full package, class name and method name signature, usable by Java
reflection. A signature is:

1. Package name
2. Class name (case counts!)
3. Method name
4. List of argument types separated by commas, surrounded by parenthesis. If the function takes no

arguments, use “()”.

This syntax is similar to the file path strings used in generators like filerow(), folder() and xpath().
The left-hand size of the “!” cannot be a zip file—only a jar file. The right-hand side is a package-class-
method signature, not the name of a file within the jar file.

95

The hardest part to get right is the argument types in the parentheses. The formal argument list must be
the exact data types declared in the function itself, including the complete package name of each
argument. “String” is invalid, but “java.lang.String” is not.

Several commonly-used Java types have DataRoller shortcuts available:

If the formal Type is: You can use the following shortcut
instead to save space:

java.lang.Object object

java.lang.String string

java.util.Date date

java.math.BigDecimal decimal

java.lang.Boolean Boolean

java.lang.Byte Byte

java.lang.Short Short

java.lang.Integer Integer

java.lang.Long Long

java.lang.Character Character

java.lang.Float Float

java.lang.Double Double

byte[] byte[]

Note the “byte[]” syntax is not what you might think. In the eyes of Java Reflection, an array of bytes
does not have a string type of “byte[]”. The actual name of a byte array is “L[byte”, which is pretty
cryptic. Since blob() returns a byte[] value, DataRoller supports the shortcut “byte[]” in a function
signature. No other array types are supported in this way, so to declare a function taking an array of
strings, you cannot use “string[]” or “java.lang.String[]”. This must be included using the “raw”
notation of “L[java.lang.String”.

96

Primitive types can be referenced by name directly: the following are all permitted, “boolean”, “byte”,
“short”, “int”, “long”, “char”, “float” and “double”. Similarly, object wrappers for primitives can
be used unqualified: “Boolean”, “Byte”, “Short”, “Integer”, “Long”, “Character”, “Float” and
“Double”.

8.6 Invocation and Execution

The class named in the function declaration is loaded once into memory, which means any class-level
static initializers will be executed once before the method is called the first time, and then never again.
Since methods named in function declarations must be static, no constructors or instance-level initializers
will be executed.

User-supplied functions do not need to be thread-safe since DataRoller executes completely within a
single thread.

However, there is no reason why a user-supplied function cannot take advantage of multi-threading if it
will speed up overall execution. User functions may create and manage their own threads, connect to
external resources, or do anything else they like. Be cautious with threads: non-daemon threads will not
be stopped automatically when DataRoller wants to quit, and the JVM process will remain running. For
safety, create all threads with setDaemon(true).

8.7 For Example

Consider an application that performs operations on small images, similar to Gimp or Picasa. Images are
stored in the database in BINARY columns. You need to give a demo of the application and need to
generate lots of rows with images and various transforms of them.

You have a Java library that can perform manipulations (maybe the application you are demoing itself!).

DataRoller is not built to manipulate images, but you have the code to do it. The library operates over
java.awt.Image objects, which JDBC cannot understand, even though it will persist these images as
BINARY values (byte arrays in Java).

The library has lots of methods, including these:

public class VendorUtil {
 public static Image removeRedeye(Image i) { … }
 public static Image desaturate(Image i, float percent) { … }
 …
}

All of these methods can be directly invoked by DataRoller because they meet the criteria above, but they
operate over object types (“java.awt.Image”) that JDBC does not understand.

97

Solution:

1. Write methods to convert from the database types for images (“byte[]”) into java.awt.Image
and back so the library can be invoked, and

2. Rely on the feature of DataRoller that a user-supplied function can accept any type and return any
type, provided the final invocation results in something JDBC can understand.

File MyImgUtil.java:

public class MyImgUtil {
 public static Image bytesToImage(byte[] data) { … }
 public static byte[] imageToBytes(Image i) { … }
}

To use these conversion functions in DataRoller, you “wrap” them in one of your conversion routines
above. DataRoller will happily pass around Image objects between function invocations:

File gimpish.txt:

function removeRedeye = “vendor.jar!VendorUtil.removeRedeye(java.awt.Image)”
function desaturate = “vendor.jar!VendorUtil.desaturate(java.awt.Image, float)”
function bytesToImage = “mystuff.jar!MyImgUtil.bytesToImage(byte[])”
function imageToBytes = “mystuff.jar!MyImgUtil.imageToBytes(java.awt.Image)”

table user_pics
 insert 10 rows
{
 username pattern(“L”) + lower(filerow(“lastnames.txt”)),
 raw_img folder(“samplepics.zip”),
 cleaned_img imageToBytes(
 desaturate(
 removeRedeye(
 bytesToImage(
 column(raw_img))),
 63),
 5.6e1))
}

Here’s the debrief:

1. The vendor library operates on Image objects, we write some conversion functions to convert
to/from byte[] which JDBC can persist in BINARY columns.

2. raw_img is pulled from actual images stored in a “demo” zip file called samplepics.zip.
folder() is a Generator that stores the file contents in DataRoller as byte[].

3. column(raw_img) just retrieves this byte[] used in the other column.
4. bytesToImage(column(raw_img)) converts this byte[] from raw_img into a java.awt.Image

object, which DataRoller happily keeps in temporary memory and hands it immediately to
removeRedeye() below.

5. removeRedeye() is passed the Image object from above and 63 and returns another Image object,
which is passed to desaturate() below.

98

6. desaturate() is passed the Image from above and 5.6e1 and returns a new Image, which is
passed to imageToBytes() below.

7. imageToBytes() takes this final image and converts it to a byte[], which DataRoller uses as the
value for column cleaned_img. A byte[] can be persisted by DataRoller.

99

9 Tips & Tricks
• List a table multiple times to match your inheritance hierarchy.
• Have a skeleton file with placeholders, and run it through a macro processor like cpp or m4. Pass

this pre-processed file to DataRoller.
• “Sanitized” production data: “select mycol from mytable” from your production database into

a text file, use it to generate sample data: each column has things that look darn close to
production without actually being production data: “production data” is usually the combination of
values on a particular row that contain business value, not the individual values themselves.

• Hit up the Internet for publicly available datasets and reference them as-needed…no sense in
generating your own values.

• Call DataRoller from a Scheduled Job or cron job. Get really fancy and link the DataRoller Java
code as an external procedure / data blade / whatever to the database back-end, and invoke it via
Agent or other database-resident scheduling mechanism.

• Run DataRoller and then “script” the database so you have offline insert statements you can replay
later on systems without DataRoller.

• Many applications have a data-services layer in them (like a Service or DAO interface) that
performs low-level data services like making sure a denormalized database is consistent. Load
methods from this layer as functions in DataRoller and invoke them directly when inserting new
rows!

• There are plenty of folders on your local system with large, binary files you can use for databases.
I point DataRoller at my music folder: each file is around 1-6 MB and certainly binary!

• Use database linking in your database to point to another database. Reference these foreign tables
as lookups for DataRoller.

• Create a “wrap-around” sequence that
counts up to 100 and then starts over at 1:

sequence(0) % 100 + 1

• In a pinch when other constructs do not
work, you can always use choice() with
booleans to execute a block only around
33% of the time.

if (choice(true, false weight 2))
 ...

9.1 Using Delete for Row Partitioning

The usual use for DataRoller is to fill an empty database so you can “move in” and do things with it. This
calls for “delete all” on the tables so you can just run the DataRoller Project file over and over again,
always resetting back to something you love, with no trace of what was there before.

100

DataRoller can be setup to leave existing data alone and only insert and remove data generated by
DataRoller. Consider a typical database with artificial primary keys in “int” columns. Extract
production data and insert into your testing database, and augment it with DataRoller data:

1. Figure out the highest, reasonable primary key value across all tables. Assume 30,000 for now.
2. Pick a value much higher than this as the “base” for all DataRoller data, such as 100,000.
3. Insert new rows starting at this base number with “sequence(100000)” so there will not be any

number clashes, and so it will be easy to tell these apart from bona fide rows.
4. Use “delete where” with a clause that deletes all values at the base or higher, such as:

 delete where “item_id >= 100000”

Use a “where” clause on the “child” clause to only attach child table rows to parent rows that came from
DataRoller:

child of widgets on this.widget_id = parent.widget_id
 where “widget_id >= 100000”

9.2 Dealing with Artificial Primary Keys

Passport numbers and car V.I.N. numbers are examples of natural keys. Using a natural key as a primary
key of a database table makes sense on the surface. However, databases rarely allow a primary key to be
altered, since there usually are foreign keys in other tables that prevent it. Natural keys generally don’t
change, but it is not generally wise to forbid this by the design of a database. To get around this, a best
practice is to make all primary keys be numbers that have no relation to the data in the table, and mark the
natural keys as unique. Each database vendor has a vendor-specific way of handing out unique numbers
for artificial keys in a way that two concurrent inserts on the same table result in different values.

Since most database vendors support automatically generating artificial primary key values by omitting
the primary column in insert statements, DataRoller scripts may simply omit the primary key entirely to
let the database do the work. However, the generated primary key value will not be available within
DataRoller while generating other column values for each row.

If the database is well-designed with no relationships between an artificial primary key and any other
column value, this limitation is rarely a nuisance. However, if the primary key is automatically generated
but not an artificial key, there may be a need to use the generated primary key value in computing other
columns in each row. Each database vendor has a separate syntax to support this reference.

The vendor-specific sections below each discuss the following common topics:

• How to rely on the database to generate key values directly
• How to bypass automatic database key generation
• How to reset the database if the automatic generation mechanism is bypassed

101

Below are examples of the patterns outlined above.

Implicit Key Generation: no access to generated column:

table passports
 insert 100 rows
{
 // pass_id omitted, so database will generate it automatically
 prefix substring(pass_id, 0, 3) // Error! “pass_id” not defined in
DataRoller!

Explicit Use of Database Key Generator: DataRoller insert statement calls key generation functions:

table passports
 insert 100 rows
{
 pass_id raw(“passports_seq.nextval”) // invoke DB-resident object to gen
erate key
 prefix substring(pass_id, 0, 3) // Error! Pass_id not available
here

Explicit Key Generation: DataRoller access to generated column:

table passports
 insert 100 rows
{
 pass_id sequence(100000), // explicitly generated, bypassing
 // DB generation
 prefix substring(pass_id, 0, 3) // Works!

When bypassing the database-provided automatic key generation mechanism, the database may need to be
“reseeded” with the next available value for subsequent insert statements to work correctly.

9.2.1 MySQL

Adding property AUTO_INCREMENT to a column will automatically generate a unique number when the
column is omitted from an insert statement. The simplest way to use this is to not include the
AUTO_INCREMENT column in DataRoller and let the DB handle it directly.

If a column is listed explicitly in an insert statement that has AUTO_INCREMENT, the database will use the
supplied values instead of constructing values implicitly. There is no special syntax or consideration to turn off
AUTO_INCREMENT.

If DataRoller explicitly supplies all values for a column marked AUTO_INCREMENT, consider resetting the
AUTO_INCREMENT value for a table so subsequent inserts (possibly outside DataRoller entirely) will work
correctly:

ALTER TABLE employees AUTO_INCREMENT = 100

Obviously pick a number much greater than the largest value DataRoller would generate.

102

table employees
 insert 400 rows
{
 emp_id 12345 + sequence(),
 . . .
}

sql “alter table employees auto_increment = 12746” // 12345 + 400 + 1 extra

9.2.2 SQL Server

Adding keyword IDENTITY to a column will automatically generate a unique number when the column is
omitted from an insert statement. The simplest way to use this is to not include the identity column in
DataRoller and let the DB handle it directly.

Explicitly listing a column in a SQL insert statement that is marked IDENTITY will cause an error. For
SQL Server, the IDENTITY mechanism must be turned off for a table before the column can be used in
insert statements with the SET IDENTITY_INSERT SQL statement. For safety, disable IDENTITY_INSERT
only while inserting rows with explicit key values, and re-enable it when done:

sql “set identity_insert employees off” // allow explicit key values

table employees
 insert 400 rows
{
 emp_id 12345 + sequence()
 . . .
}

sql “set identity_insert employees on” // re-enables key generation

There is no need to re-seed the identity mechanism for SQL Server tables. The database will
automatically generate a unique value for IDENTITY columns after re-enabling IDENTITY_INSERT.

9.2.3 Oracle Sequences

Unlike MySQL and SQL Server, Oracle uses a separate database object to generate unique values:
sequences.

Typical use: create a Sequence along with each table to supply artificial primary key values:

create sequence cars_seq;
create table cars(
 car_id number(8) primary key, // use cars_seq to supply values
 ...
);

Use function “nextval” on the sequence in each insert statement:

insert into cars (car_id, ...) values (cars_seq.nextval, ?, ?, ? . . .)

103

Because a separate database object is used to supply unique values outside the table itself, use raw() to
invoke the sequence directly.

table cars
 insert 400 rows
{
 car_id raw(“cars_seq.nextval”), // use cars_seq to supply values
 ...
}

This is the simplest invocation to generate primary keys with Oracle. Unlike other databases that use a
marker on the actual primary key column such as IDENTITY for SQL Server, Oracle has no table-enforced
constraint. So, any value may be used for a primary key column even if there is a sequence created for
the purpose. In Oracle, sequences are not tied to primary key columns to forbid clients from inserting
their own explicit values at will.

If the database sequence is not used (no raw(“___.nextval”) invocation), the next application to try to
insert a new row will cause a primary key violation since the Sequence will likely generate a number that
DataRoller already inserted. When done inserting new rows via DataRoller, consider setting the Sequence
so it will continue to generate unique values. There is no support for altering a Sequence and setting the
next value it will return, so the simplest solution is to drop the sequence and recreate it. Note that
DataRoller is often executed with an account that does not have DDL permission (permission to alter
database objects), so this may be a concern.

Reset a sequence after explicitly inserting new data:

table employees
 insert 400 rows
{
 emp_id 12345 + sequence() // no need to use employees_seq here
 . . .
}

sql “drop sequence employees_seq”
sql “create sequence employees_seq minvalue 12746” // 12345 + 400 + 1 extra

9.3 Avoid Querying Unneeded Data

When faced with a parent table (“child of” clause) or a reference to another table such as
column(tbl.col) or randomrow(), DataRoller caches the entire target table in memory for efficiency.
The advantage to this approach is that DataRoller can execute faster with all data in memory. The
obvious disadvantage is the amount of memory needed to cache large referenced tables.

To make this as efficient as possible:

• Reduce the number of rows available in the target table
• Only query and cache the columns referenced in the DataRoller file.

104

For example, consider the following table and related DataRoller file:

create table periodicals (
 id int,
 title varchar(80),
 publisher_id int,
 product_id int,
 issue_number int,
 issue_in_pdf BLOB
);

Each periodicals record has a few small foreign key
columns plus a huge JPEG value of the entire issue
in PDF form. Obviously avoiding the BLOBs
would speed up DataRoller.

table orders
 child of periodicals on
 this.periodical_id = parent.id
 insert 10 rows
{
 title parent.title
 ...
}

DataRoller will pull all records from periodicals
table above, loop over each, and insert 10 records
into orders for each. DataRoller pulls every
column even though only id and title are
referenced above.

To avoid caching every cover image and issue in PDF format, create a temporary view that only selects
the columns used in the DataRoller file:

sql “create view periodvw as
 select id, title
 from periodicals”

table orders
 child of periodvw on
 this.periodical_id = parent.id
 insert 10 rows
{
 ...
}

sql “drop view periodvw”

DataRoller will pull all columns from the view
instead of from the periodicals table, which is much
faster and requires less memory to complete since
the BLOB values are not retrieved.
If the database user does not have permission to
create objects such as views, consider a temporary
table built from a similar select statement:

sql “create temporary table periodvw
 select id, title
 from periodicals”

9.4 Mutually Unique randomrow()

A table that tracks motorcycle patrols from a local police station has a row for every patrol. A patrol has
two motorcycles from the vehicle pool and two officers, referred to as the “lead” and “tail” riders.
Obviously one officer cannot ride tow bikes, and both officers cannot share a single bike. A patrol cannot
be the same officer twice.

105

table motorcycle_patrols
 insert 50 rows
{
 patrol_id sequence(),

 lead_cycle_vin column(motorcycles.vin unique), // Not mutually unique!
 tail_cycle_vin column(motorcycles.vin unique),

 $leadRider = randomrow(officers unique), // Not mutually unique!
 $tailRider = randomrow(officers unique),

 lead_officer_id $leadRider.id,
 lead_officer_badge $leadRider.badge,

 tail_officer_id $tailRider.id,
 tail_officer_badge $tailRider.badge
}

The above first attempt looks good, but there is a problem: each Generator with “unique” works
independently from all other Generators. So, lead_cycle_vin might be the same value as
tail_cycle_vin for the same row and $leadRider may be the same row in officers as $tailRider for a
particular row in motorcycle_patrols.

DataRoller has no support for assuring that two columns are mutually-unique. One way to get around this
problem is to have separate views into table motorcycles and officers for each portion that has to be
mutually unique. Define the views such that they partition the underlying table roughly into two equal
portions such that someone looking at the data wouldn’t be able to see the algorithm obviously (like
putting all male officers into one partition and all females into the other).

For the above examples, the badge numbers and ID fields can be used with a simple algorithm like
“divisible by 2”. Since VIN is a character field, look at the last character instead.

106

Better solution:

/*
 * PARTITION the officers table into two groups with no items in both and no items
 * in neither. Same for motorcycles table.
 * For officers, just MOD the numeric ID.
 * For bikes, pull the last VIN character, convert it to ASCII, and MOD it.
 */
sql “create view officer1 as
 select id, badge
 from officers
 where mod(id, 2) = 0”

sql “create view officer2 as
 select id, badge
 from officers
 where mod(id, 2) = 1”

sql “create view bikes1 as
 select vin
 from motorcycles
 where mod(ascii(right(vin, 1)), 2) = 0”

sql “create view bikes2 as
 select vin
 from motorcycles
 where mod(ascii(right(vin, 1)), 2) = 1”

table motorcycle_patrols
 insert 50 rows
{
 patrol_id sequence(),

 lead_cycle_vin column(bikes1.vin unique), // Not mutually unique!
 tail_cycle_vin column(bikes2.vin unique),

 $leadRider = randomrow(officer1 unique), // Not mutually unique!
 $tailRider = randomrow(officer2 unique),

 lead_officer_id $leadRider.id,
 lead_officer_badge $leadRider.badge,

 tail_officer_id $tailRider.id,
 tail_officer_badge $tailRider.badge
}

sql “drop view officer1”
sql “drop view officer2”
sql “drop view bikes1”
sql “drop view bikes2”

To DataRoller, this “fake out” just looks like four separate tables that it reads in and caches in memory
separately. The randomrow() and column() entries serve out values from each table uniquely.

107

10 For Reference

10.1 Project Syntax Reference

Data Source Syntax Meaning

Integer 12

random(5..20)

random(0 .. 10000 interval 10)

random(5..20 unique)

sequence(5 step 8)

sequence(1)

sequence()

Literal 12 for every row

Random value, step 1 implied

Random value divisible by 10

Random, unique

Sequence from 5 up by 8s

Sequence from 1 up by 1s

Special case: “sequence(1)”

Real -90.77

random(5.6 .. 7.9 step 0.1)

random(5.6 .. 7.9 step 0.1 unique)

sequence(7.4 step 0.001)

Real literal

Random value in a range

Same as above, remove dups

Sequence of values (step required)

Date D’2010-4-6T11:00’

random(D’1900-1-1’ .. D’2010-1-1’
 step /2 days/)

random(D’1900-1-1’ .. D’2010-1-1’
 step /2 days/ unique)

sequence(D’1974-6-12’
 step /1 month/)

Date literal (with time component)

Random value spaced 2 days

Same, no dups

Incremental dates, every month

List of values
(not just
strings!)

choice(1, 2, 3)

choice(“a”, “b”, “c”)

choice(D’today’ weight 2,
 D’yesterday’ weight 3,
 D’today’ – 2 weight 4,
 D’today’ – 3 weight 5)

Random values from pre-supplied
list

There’s no “sequential choice” type.

There’s no “unique” qualifier.

108

Data Source Syntax Meaning

Files from
folder

folder(“mydir”) Pick a file at random from the folder
specified, return the file’s contents.

Lines from
file

filerow(“abc.txt”) Pick a random row from the text file
specified, without any trailing
newline characters.

XPath from
XML

xpath(“a.xml”, “//topLvl”)

xpath(“a.xml”, “//topLvl” unique)

xpath(“a.xml”, “//topLvl”
 unique per parent)

Run the supplied XPath query on the
input XML file, cache all values in
memory, and pick one at random for
each row.

SQL query sql(“select …”)

sql(“select … a == ?”
 bind $var)

Execute the supplied SQL statement
and return the first column from the
first row of the result set.
Optionally bind to “?” parameters.

SQL column column(tbl.colnm)

column(tbl.colnm unique)

column(tbl.colnm unique per parent)

tbl.colnm

Use a random value from the
supplied table and column (from
database table or “lookup table”
Excel file.

109

10.2 DataRoller Keywords

all file null sql

bind folder of step

blob function on table

case haspreviousrow parent then

child hour per this

choice hours previousrow TRUE

column if random unique

day insert randomrow weight

days lookup raw when

delete lorem row where

else minute rows xpath

end minutes second year

FALSE month seconds years

filerow months sequence

110

10.3 Syntax Reference

The text below expresses the grammar for DataRoller project files in modified BNF form. Parenthesis
indicate grouping. Parenthesis with “+” suffix denotes one or more repetitions. Parenthesis with “*”
suffix denotes zero or more repetitions. Parenthesis with “?” suffix indicate an optional clause. Words in
angle brackets denote keywords (lower case). Literals are enclosed in double-quotes (the double-quotes
are not part of the literal). Non-terminals appear in italics.

10.3.1 Lexical Elements

<DATE> : "D\'" (["A"-"Z","a"-"z","0"-"9","-",":"," ","/"])+ "\'"

<INT> : ("-")? (
 (["0"-"1"])+ "_2" |
 (["0"-"7"])+ "_8" |
 (["0"-"9"])+ |
 "0x" (["0"-"9","A"-"F","a"-"f"])+
)

<DECIMAL> : ("-")? (["0"-"9"])+ "." (["0"-"9"])+

<FLOAT> : ("-")? (["0"-"9"])+ "." (["0"-"9"])+
 ["E","e"] (["+","-"])? (["0"-"9"])+

<VAR> : "$" (["A"-"Z", "a"-"z", "0"-"9", "_"])+

<LABEL> : (["A"-"Z","a"-"z","0"-"9","_","#","$"])+
 | "[" (~["]","\n","\r","\f"])+ "]"

<STR> : "\"" (
 ~["\"","\\"] |
 "\\" (
 ["n","t","r","\\","\""] |
 "u" (["0"-"9","a"-"f","A"-"F"]){4}
)
)* "\""

10.3.2 Grammar

10.3.2.1 Project Files

project := functions lookupTables projectActions

functions := (<FUNCTION> <LABEL> "=" <STR>)*

lookupTables := (<LOOKUP> <TABLE> <LABEL> "=" <STR>)*

projectActions := ((<SQL> (<STR> | <FILE> <STR>)) | table)+

111

10.3.2.2 Tables

table := <TABLE> <LABEL>
 (<DELETE> (<ALL> | <WHERE> <STR>))?
 (parentTable)?
 <INSERT> integerRange <ROWS> "{" columns "}"

parentTable := <CHILD> <OF> <LABEL>
 <ON> <THIS> "." <LABEL> "=" <PARENT> "." <LABEL>
 (<WHERE> <STR>)?

columns := (column ("," column)*)?

column := (<LABEL>
 (
 <RAW> "(" <STR> ")"
 | generatorExp (<NULL> <INT> "%")?
)
 | <VAR> "=" generatorExp (<NULL> <INT> "%")?)

10.3.2.3 Expressions

generatorExp := andExp ("||" andExp)*

andExp := notExp ("&&" notExp)*

notExp := ("!")? eqExp

eqExp := relationExp (
 "===" relationExp
 | "!==" relationExp
 | "==" relationExp
 | "!=" relationExp
)*

relationExp := additiveExp (
 "<" additiveExp
 | "<=" additiveExp
 | ">" additiveExp
 | ">=" additiveExp
)*

additiveExp := multExp (
 "+" multExp
 | "-" multExp
 | "&" multExp
)*

multExp := primaryExp (
 "*" primaryExp
 | "/" primaryExp
 | "%" primaryExp
)*

primaryExp := (generatorTerm | "(" generatorExp ")")

112

10.3.2.4 Generators

generatorTerm := (
 primitiveValue
 | randomGenerator
 | sequenceGenerator
 | <VAR> ("." <LABEL>)?
 | <FOLDER> "(" <STR> (uniqueType)? ")"
 | <FILEROW> "(" <STR> (uniqueType)? ")"
 | <XPATH> "(" <STR> "," <STR> (uniqueType)? ")"
 | <CHOICE> "(" weightedRandomList ")"
 | <SQL> "(" <STR> (<BIND> labellist)? ")"
 | <BLOB> "(" integerRange ")"
 | <LOREM> "(" integerRange ")"
 | <RANDOMROW> "(" <LABEL> (uniqueType)? ")"
 | <HASPREVIOUSROW> "(" ")"
 | <PREVIOUSROW> "(" <LABEL> ")"
 | columnOrFunction
 | conditionalGenerator
)

randomGenerator := <RANDOM> "(" (
 <INT> ".." <INT> (<STEP> <INT>)? (uniqueType)?
 | <DECIMAL> ".." <DECIMAL> <STEP> <DECIMAL>
 | <FLOAT> ".." <FLOAT>
 | <DATE> ".." <DATE> (<STEP> "/" timeDimension "/")?
 (uniqueType)?
) ")"

sequenceGenerator := <SEQUENCE> "(" (
 <DECIMAL> <STEP> <DECIMAL> (<UNIQUE> <PER> <PARENT>)?
 | <DATE> (<STEP> duration)? (<UNIQUE> <PER>
<PARENT>)?
 | <FLOAT> <STEP> <FLOAT> (<UNIQUE> <PER> <PARENT>)?
 | (<INT> (<STEP> <INT>)? (<UNIQUE> <PER>
<PARENT>)?)?
) ")"

columnOrFunction := (
 <COLUMN> "(" (
 <LABEL> ("." <LABEL> (uniqueType)?)?
 | <PARENT> "." <LABEL>
) ")"
 | <LABEL> ("." <LABEL> | "(" functionArgs ")")?
 | <PARENT> "." <LABEL>
)

conditionalGenerator := (
 <IF> "(" generatorExp ")" (<THEN>)?
 generatorExp (<ELSE> generatorExp)? <END>
 | <CASE> (<WHEN> generatorExp <THEN> generatorExp)+
 (<ELSE> generatorExp)? <END>
)

10.3.2.5 Primitives

uniqueType := <UNIQUE> (<PER> <PARENT>)?

duration := "/" (<INT> timeDimension)+ "/"

113

timeDimension := (<YEARS> | <MONTHS> | <DAYS> | <HOURS>
 | <MINUTES> | <SECONDS>)

functionArgs := (generatorExp ("," generatorExp)*)?

integerRange := <INT> (".." <INT>)?

labellist := <LABEL> ("," <LABEL>)*

weightedRandomList := primitiveValue (<WEIGHT> <INT>)? (
 "," primitiveValue (<WEIGHT> <INT>)?
)*

primitiveValue := (<STR> | <INT> | <DECIMAL> | <FLOAT>
 | <DATE> | <TRUE> | <FALSE> | <NULL>)

10.4 JDBC URL Reference

“jdbc:” is a common prefix to all connection strings.

The second portion is a label. This label is used to cross-reference with drivers available to DataRoller.

Database JDBC Type 4 Connection Information

SQL Server
(Microsoft)

Simplest connection to a local instance on port 1433 with the default database of
the connecting user:

jdbc:sqlserver://localhost

Connection to instance SALES on host DBSRVR port 1234 and use database
TESTDB:

jdbc:sqlserver://DBSRVR\SALES:1234;database=TESTDB

For reference:
http://msdn.microsoft.com/en-us/library/ms378672%28v=sql.90%29.aspx

SQL Server
(jTDS)

Simplest connection to a local instance on port 1433 with the default database of
the connecting user:

jdbc:jtds:sqlserver://localhost

Connection to the default instance on host DBSRVR port 1234 and use database
TESTDB:

jdbc:jtds:sqlserver://DBSRVR:1234/TESTDB;instance=SALES

For reference:
http://jtds.sourceforge.net/faq.html#urlFormat

114

http://msdn.microsoft.com/en-us/library/ms378672(v=sql.90).aspx

Database JDBC Type 4 Connection Information

Sybase
Simplest connection to a local instance on port 7100 with the default database of
the connecting user:

jdbc:jtds:sybase://localhost

Connection to host “DBSRVR” port 1234 and use database TESTDB:
jdbc:jtds:sybase://DBSRVR:1234/TESTDB

For reference:
http://jtds.sourceforge.net/faq.html#urlFormat

HSQLDB
Connecting to local HSQLDB database server:

jdbc:hsqldb:hsql://localhost

Loading HSQLDB files directly (when there is no HSQLDB server using them):
jdbc:hsqldb:file:C:/db/SALESDB

In the sample above, folder C:/db will open or create files such as SALESDB.log
and SALESDB.properties.

For reference:
http://hsqldb.org/doc/guide/guide.html#rgc_connecting_db

MySQL
Connecting to local MySQL database server (no hostname defaults to 127.0.0.1)
on port 3306:

jdbc:mysql://

Connection to host DBSRVR, port 1234, database TESTDB and compress all network
traffic:

jdbc:mysql://DBSRVR:1234/TESTDB;useCompression=true

For reference:
http://dev.mysql.com/doc/refman/5.6/en/connector-j-reference-configuration-
properties.html

115

http://dev.mysql.com/doc/refman/5.6/en/connector-j-reference-configuration-properties.html
http://dev.mysql.com/doc/refman/5.6/en/connector-j-reference-configuration-properties.html

Database JDBC Type 4 Connection Information

PostgreSQL
Connect to local database TESTDB default port 5432:

jdbc:postgresql:TESTDB

Connect to host DBSRVR default database on default port 5432:
jdbc:postgresql://DBSRVR

Connection to host DBSRVR, port 1234, database TESTDB and compress all network
traffic:

jdbc:postgresql://DBSRVR:1234/TESTDB

For reference:
http://jdbc.postgresql.org/documentation/head/connect.html

Oracle
Connect to service TESTDB on the local TNS listener on default port 1521:

jdbc:oracle:thin:@//localhost/TESTDB

Connection to host DBSRVR, port 1234, database TESTDB:
jdbc:oracle:thin:@//DBSRVR:1521/TESTDB

For reference:
http://docs.oracle.com/cd/B14117_01/java.101/b10979/urls.htm

DB2
Connect to local database TESTDB on the default port (likely 446, 6789, or 50000):

jdbc:db2:TESTDB

Connection to host DBSRVR, port 1234, database TESTDB:
jdbc:db2://DBSRVR:1234/TESTDB

For reference:
http://www.ibm.com/developerworks/data/library/techarticle/dm-0512kokkat/

10.5 DataRoller License and Included Works

DataRoller is made available under the GNU General Public License. A copy of this license is provided
in the DataRoller distribution in file “License.txt”.

116

http://www.ibm.com/developerworks/data/library/techarticle/dm-0512kokkat/
http://docs.oracle.com/cd/B14117_01/java.101/b10979/urls.htm
http://jdbc.postgresql.org/documentation/head/connect.html

Software used by DataRoller:

Software Group Software Provided

The Apache Software Foundation (http://www.apache.org/) BCEL
CGLIB
Commons CLI
Commons Codec
Commons Collections
Commons DBCP
Commons IO
Commons Lang
Commons Logging
Commons Pool
DbUtils
Log4j
OGNL
Poi
Xalan
Xerces

The Werken Company (http://jaxen.werken.com/) Jaxen

The JDOM Project, Jason Hunter & Brett McLaughlin
(http://www.jdom.org/)

JDOM

The XOM Project, Elliotte Rusty Harold
(http://www.xom.nu/)

XOM

The ICU Project from IBM (http://site.icu-project.org/) Icu4j

John Cowan (http://ccil.org/~cowan/XML/tagsoup) Tagsoup

The DOM4J Project (http://www.dom4j.org) Dom4j

The jTDS Project (http://jtds.sourceforge.net/) jTDS

The TestNG Project (http://testng.org/) TestNG

The DBUnit Project (http://www.dbunit.org/) DBUnit

117

http://www.dbunit.org/
http://testng.org/
http://jtds.sourceforge.net/
http://www.dom4j.org/
http://ccil.org/~cowan/XML/tagsoup
http://site.icu-project.org/
http://www.xom.nu/
http://www.jdom.org/
http://jaxen.werken.com/
http://www.apache.org/

Software Group Software Provided

Joe Walnes, Henri Tremblay, Leonardo Mesquita
(http://objenesis.googlecode.com/)

EasyMock
Objenesis

The Hypersonic SQL Group(http://www.hsqldb.org/) HSQLDB

The MySQL Group (http://www.mysql.org) MySQL

The Unitils Project (http://unitils.org/) Unitils

The W3C consortium (http://www.w3c.org) XML APIs

The SAX project (http://www.saxproject.org) SAX

Scott Hudson, Frank Flannery, C. Scott Ananian
(www.cs.princeton.edu/~appel/modern/java/CUP) CUP Parser Generator

118

http://www.cs.princeton.edu/~appel/modern/java/CUP
http://www.saxproject.org/
http://www.w3c.org/
http://unitils.org/
http://www.mysql.org/
http://www.hsqldb.org/
http://objenesis.googlecode.com/

	1 For The Impatient
	2 Overview
	3 Project Files
	3.1 Comments
	3.2 Labels
	3.3 Tables
	3.4 Deleting Old Rows
	3.5 Parent Child Relationships
	3.5.1 Where Clause

	3.6 Unique and Unique Per Parent
	3.6.1 Data Exhaustion
	3.6.2 Example
	3.6.3 Independently Unique
	3.6.4 Sequences

	3.7 Columns
	3.8 Data Types
	3.8.1 Strings
	3.8.2 Integers
	3.8.3 Decimals
	3.8.4 Floats
	3.8.5 Dates and Times
	3.8.6 Booleans
	3.8.7 Nulls
	3.8.8 Unsupported Data Types
	3.8.9 Null Expressions

	3.9 Variables
	3.9.1 Assignment
	3.9.2 Variables and randomrow()

	3.10 Embedded SQL
	3.10.1 Embed SQL in DataRoller File
	3.10.2 Reference External SQL File

	3.11 A Note on File and Folder Names
	3.12 Lookup Tables

	4 Generators
	4.1 Random Data
	4.1.1 Random Integers
	4.1.2 Random Decimals
	4.1.3 Random Floats
	4.1.4 Random Dates and Timestamps
	4.1.5 Choice
	4.1.6 BLOB

	4.2 Structured Data
	4.2.1 Lorem Ipsum
	4.2.2 Sequences
	4.2.2.1 Date Sequences

	4.3 Column
	4.3.1 Current-Row Reference
	4.3.2 Separate Table Reference
	4.3.3 Parent Table Reference

	4.4 Lookup Data
	4.4.1 File Row Lookup
	4.4.2 Folder Contents Lookup
	4.4.3 XML File Lookup
	4.4.4 randomrow()
	4.4.5 Previous Row

	4.5 SQL
	4.6 Operators
	4.6.1 Types, Nulls and No Short-Circuit Logic
	4.6.2 Boolean Operators
	4.6.3 Equality Operators
	4.6.4 Comparison Operators
	4.6.5 Algebraic Operators
	4.6.6 String Operators
	4.6.7 Dates
	4.6.8 Operator Summary Table

	4.7 Conditionals
	4.7.1 If then else
	4.7.2 Case When
	4.7.3 Conditionals Example

	4.8 Raw()

	5 Functions
	5.1 String Functions
	5.1.1 Function pattern()
	5.1.2 Function guid()

	5.2 Numeric Functions
	5.2.1 Integral Functions
	5.2.2 Floating-point Functions

	5.3 Date and Timestamp Functions
	5.4 System Functions
	5.5 Cryptographic Functions
	5.6 Data-Type Conversion Functions

	6 Execution
	6.1 Command-line Switches
	6.2 User Preferences and Aliases
	6.3 Loading JDBC Drivers
	6.3.1 SQL Server
	6.3.2 Oracle
	6.3.3 DB2

	7 Speeding up DataRoller
	7.1 DataRoller Generator Relative Costs
	7.2 Rebuild Indexes
	7.3 Regenerate Statistics
	7.4 Lock Tables
	7.5 Disable Costly Constraints

	8 Extending DataRoller
	8.1 User-Supplied Functions
	8.2 Java Function
	8.3 Arguments and Return Types
	8.4 Function Alias
	8.5 Function Signature
	8.6 Invocation and Execution
	8.7 For Example

	9 Tips & Tricks
	9.1 Using Delete for Row Partitioning
	9.2 Dealing with Artificial Primary Keys
	9.2.1 MySQL
	9.2.2 SQL Server
	9.2.3 Oracle Sequences

	9.3 Avoid Querying Unneeded Data
	9.4 Mutually Unique randomrow()

	10 For Reference
	10.1 Project Syntax Reference
	10.2 DataRoller Keywords
	10.3 Syntax Reference
	10.3.1 Lexical Elements
	10.3.2 Grammar
	10.3.2.1 Project Files
	10.3.2.2 Tables
	10.3.2.3 Expressions
	10.3.2.4 Generators
	10.3.2.5 Primitives

	10.4 JDBC URL Reference
	10.5 DataRoller License and Included Works

